Answer: Ionic compounds are compounds consisting of ions.
Two-element compounds are usually ionic when one element is a metal and the other is a non-metal
Explanation: hope this helps!
The answer is one dot.
The number of dots an element has represented in the diagram, indicates how many valence eletrons( which is the number of electrons in the most exterior energy level of an atom or ion) the element has. So, 1 valence eletron equals one dot.
The empirical formula is the simplest formula attainable while maintaining the ratio so it will be CH2.
Explanation:
The empirical formula of a chemical compound is the simplistic positive integer ratio of atoms being in a compound. A simple example of this thought is that the empirical formula of sulfur monoxide, or SO, would simply be SO, as is the empirical formula of disulfur dioxide, S2O2.
Answer:
- 602 mg of CO₂ and 94.8 mg of H₂O
Explanation:
The<em> yield</em> is measured by the amount of each product produced by the reaction.
The chemical formula of <em>fluorene</em> is C₁₃H₁₀, and its molar mass is 166.223 g/mol.
The <em>oxidation</em>, also know as combustion, of this hydrocarbon is represented by the following balanced chemical equation:

To calculate the yield follow these steps:
<u>1. Mole ratio</u>

<u />
<u>2. Convert 175mg of fluorene to number of moles</u>
- Number of moles = mass in grams / molar mass
<u>3. Set a proportion for each product of the reaction</u>
a) <u>For CO₂</u>
i) number of moles


ii) mass in grams
The molar mass of CO₂ is 44.01g/mol
- mass = number of moles × molar mass
- mass = 0.013686 moles × 44.01 g/mol = 0.602 g = 602mg
b) <u>For H₂O</u>
i) number of moles

ii) mass in grams
The molar mass of H₂O is 18.015g/mol
- mass = number of moles × molar mass
- mass = 0.00526 moles × 18.015 g/mol = 0.0948mg = 94.8 mg
Given:
Be - Beryllium - 9,3227
C - Carbon - 11,2603
O - Oxygen - 13,6181
Ne - Neon - 21,5645
B - Boron - 8,298
Li - Lithium - 5,3917
F - Fluorine - 17,4228
N - Nitrogen - 14,5341
Arranged from highest ionization energy to lowest ionization energy.
Ne ; F ; N ; O ; C ; Be ; B ; Li