True. No matter can be created nor destroyed in pretty much every aspect of life, especially chemical reactions.
Given that,
Initial velocity , Vi = 0
Final velocity , Vf = 40 m/s
Acceleration due to gravity , a = 9.81 m/s²
Distance can be calculated as,
2as = Vf² - Vi²
2 * 9.81 *s = 40² - 0²
s = 81.55 m
For half height, that is, s = 40.77m
Vf= ??
2as = Vf² - Vi²
2 * 9.81 * 40.77 = Vf² - 0²
Vf² = 800
Vf = 28.28 m/s
Therefore, speed of roller coaster when height is half of its starting point will be 28 m/s.
Answer
given,
ω₁ = 0 rev/s
ω₂ = 6 rev/s
t = 11 s
Using equation of rotational motion
The angular acceleration is
ωf - ωi = α t
11 α = 6 - 0
= 0.545 rev/s²
The angular displacement
θ₁= ωi t + (1/2) α t²
θ₁= 0 + (1/2) (0.545)(11)^2
θ₁= 33 rev
case 2
ω₁ = 6 rev/s
ω₂ = 0 rev/s
t = 14 s
Using equation of rotational motion
The angular acceleration is
ωf - ωi = α t
14 α = 0 - 6
= - 0.428 rev/s²
The angular displacement
θ₂= ωi t + (1/2) α t²
θ₂= 6 x 14 + (1/2) (-0.428)(14)^2
θ₂= 42 rev
total revolution in 25 s is equal to
θ = θ₁ + θ₂
θ = 33 + 42
θ = 75 rev
Answer:
v = 10 m/s
Explanation:
recall that velocity is related to wavelength and frequency by the formula
v = fλ
where v = velocity, f = frequency and λ= wavelength
Simply substitute these into the formula:
v = fλ
v = (0.5)(20)
v = 10 m/s
The period of the block's mass is changed by a factor of √2 when the mass of the block was doubled.
The time period T of the block with mass M attached to a spring of spring constant K is given by,
T = 2π(√M/K).
Let us say that, when we increased the mass to 2M, the time periods of the block became T', the spring constant is not changed, so, we can write,
T' = 2π(√2M/K)
Putting T = 2π(√M/K) above,
T' =√2T
So, here we can see, if the mass is doubled from it's initial value. The time period of the mass will be changed by a factor of √2.
To know more about time period of mass, visit,
brainly.com/question/20629494
#SPJ4