Answer:
The charge resides on the outer surface =
C
Explanation:
Surface area of cell 
Separation between two plate
Dielectric constant 
Potential difference 
The capacitance of parallel plate capacitor in free space is given by,

Where
permittivity of free space = 
The Capacitance of capacitor is increase by
times when it placed in dielectric medium.

And we know that, 
So charge on the outer surface is given by,



Answer:
Explanation:
Let's answer these statements
.1) True. This is the law of reflection.
.2) False. The speed of light depends on the index of refraction n = c / v
v = c / n
.3) True. The frequency creates a forced oscillation, whereby the atoms re-emit at the same incident frequency
.4) False. The index of refraction is a measure of the ratio of the speed of light in a vacuum and the material environment, the ability to change the trajectory is given by the law of refraction
.5) True. True due to the change in beam trajectory due to the law of refraction
.6 False. The phenomenon occurs when you pass from a medium with a higher index to one with a lower ratio, because the refracted beam separates from the normal
.7) True.
.8) False so that the lightning approach is valid Lam >> d,
.9) True.
Answer:
For left = 0 N/C
For right = 0 N/C
At middle =
N/C
Explanation:
Given data :-
б =
C/ m²
Considering the two thin metal plates to be non conducting sheets of charges.
Electric field is given by

1) To the left of the plate
= 0 N/C.
2) To the right of them.
= 0 N/C.
3) Between them.
=
=
=
N/C
acceleration of the car = 0.33 m/s²
Explanation:
To calculate the acceleration of the car we use the following formula:
acceleration = change in velocity / time
change in velocity = final velocity - initial velocity
change in velocity = 23 m/s - 13 m/s = 10 m/s
change in velocity = 10 m/s
acceleration = 10 m/s / 30 s
acceleration = 0.33 m/s²
Learn more about:
acceleration
brainly.com/question/4134594
brainly.com/question/1213762
#learnwithBrainly
Answer:
True
Explanation:
Solids, Liquids, and Gases are all make up of <u><em>atoms and molecules. </em></u>