Answer:
If there reacted 1.5 moles of O2, there will be produced 1.0 mol of Fe2O3
Explanation:
Step 1: Data given
Number of moles oxygen reacted = 1.5 moles
Step 2: The balanced equation
4Fe + 3O2 → 2Fe2O3
Step 3: Calculate moles of Fe2O3
For 4 moles Fe consumed, we need 3 moles of O2 to produce 2 moles of Fe2O3
For 1.5 moles O2 consumed, we'll have 2/3 * 1.5 = 1.0 mol of Fe2O3
If there reacted 1.5 moles of O2, there will be produced 1.0 mol of Fe2O3
The national government was too weak to solve the nation's problems.
The Articles of Confederation were only meant to be temporary, like a stand in, until a better document, eventually known as the constitution, could be created.
Answer:
The heat lost by the water
3.8 KJ
The heat gain by ice
= 228.76 J
The heat required to melt the ice
= 3340 J
Explanation:
Mass of ice cube
= 10 gm
Initial temperature of ice cube
= 0 °c
Mass of water
= 100 gm
Initial temperature of water
= 20 °c
Final temperature of mixture
= 10.93 °c
(a). Total heat lost by the water
(
-
)
⇒
100 × 4.184 (20 - 10.93)
⇒
3.8 KJ
This is the heat lost by the water.
(b). Heat gained by the ice cube
=

⇒
= 10 × 2.093 × ( 10.93 - 0)
⇒
= 228.76 J
This is the heat gain by ice.
(C). Heat required to melt the ice
=
× Latent Heat
⇒
= 10 × 334
⇒
= 3340 J
This is the heat required to melt the ice.
<span>1.44x10^23 molecules of oxygen gas
The ideal gas law is
PV = nRT
where
P = pressure (800.0 Torr)
V = volume (5.60 L)
n = number of moles
R = Ideal gas constant (62.363577 L*Torr/(K*mol) )
T = absolute temperature (27C + 273.15 = 300.15 K)
Let's solve for n, the substitute the known values and solve.
PV = nRT
PV/RT = n
(800.0 Torr*5.60 L)/(62.363577 L*Torr/(K*mol)*300.15 K) = n
(4480 L*Torr)/(18718.42764 L*Torr/mol) = n
0.239336342 mol = n
So we have 0.239336342 moles of oxygen molecules. To get the number of atoms, we need to multiply by avogadro's number, so:
0.239336342 * 6.0221409x10^23 = 1.44x10^23</span>
Here is the answer
http://m.imgur.com/tJ2WwiN