1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aliya0001 [1]
2 years ago
6

'Energy' has the potential to:

Engineering
1 answer:
Kazeer [188]2 years ago
6 0

answer:

Energy' has the potential to:<u>do work</u>

b.do work

You might be interested in
Answer my question I will mark brainliest
Iteru [2.4K]

Answer:

150

Explanation:

Mark me Brainliest

6 0
3 years ago
Read 2 more answers
Find the time-domain sinusoid for the following phasors:_________
sattari [20]

<u>Answer</u>:

a.  r(t) = 6.40 cos (ωt + 38.66°) units

b.  r(t) = 6.40 cos (ωt - 38.66°) units

c.  r(t) = 6.40 cos (ωt - 38.66°) units

d.  r(t) = 6.40 cos (ωt + 38.66°) units

<u>Explanation</u>:

To find the time-domain sinusoid for a phasor, given as a + bj, we follow the following steps:

(i) Convert the phasor to polar form. The polar form is written as;

r∠Ф

Where;

r = magnitude of the phasor = \sqrt{a^2 + b^2}

Ф = direction = tan⁻¹ (\frac{b}{a})

(ii) Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid (r(t)) as follows:

r(t) = r cos (ωt + Φ)

Where;

ω = angular frequency of the sinusoid

Φ = phase angle of the sinusoid

(a) 5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

5 + j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

(b) 5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

5 - j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(c) -5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{-5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

-5 + j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(d) -5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{-5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

-5 - j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

3 0
3 years ago
The size of Carvins Cove water reservoir is 3.2 billion gallons. Approximately, 11 cfs of water is continuous withdrawn from thi
Zolol [24]

Answer:

471 days

Explanation:

Capacity of Carvins Cove water reservoir = 3.2 billion gallons i.e. 3.2 x 10˄9 gallons

As,  

1 gallon = 0.133 cubic feet (cf)

Therefore,  

Capacity of Carvins Cove water reservoir in cf  = 3.2 x 10˄9 x 0.133

                                                                         = 4.28 x 10˄8

 

Applying Mass balance i.e

Accumulation = Mass In - Mass out   (Eq. 01)

Here  

Mass In = 0.5 cfs

Mass out = 11 cfs

Putting values in (Eq. 01)

Accumulation  = 0.5 - 11

                         = - 10.5 cfs

 

Negative accumulation shows that reservoir is depleting i.e. at a rate of 10.5 cubic feet per second.

Converting depletion of reservoir in cubic feet per hour = 10.5 x 3600

                                                                                       = 37,800

 

Converting depletion of reservoir in cubic feet per day = 37, 800 x 24

                                                                                         = 907,200  

 

i.e. 907,200 cubic feet volume is being depleted in days = 1 day

1 cubic feet volume is being depleted in days = 1/907,200 day

4.28 x 10˄8 cubic feet volume will deplete in days  = (4.28 x 10˄8) x                    1/907,200

                                                                                 = 471 Days.

 

Hence in case of continuous drought reservoir will last for 471 days before dry-up.

8 0
3 years ago
How do I do this?<br> Blueprints, complete the missing view.
Ymorist [56]

Explanation:

Look at the drawings and decide which view is missing. Front? Side? Top? Then draw it

7 0
3 years ago
A well-insulated, rigid tank has a volume of 1 m3and is initially evacuated. A valve is opened,and the surrounding air enters at
DiKsa [7]

Answer:

0.5 kW

Explanation:

The given parameters are;

Volume of tank = 1 m³

Pressure of air entering tank = 1 bar

Temperature of air = 27°C = 300.15 K

Temperature after heating  = 477 °C = 750.15 K

V₂ = 1 m³

P₁V₁/T₁ = P₂V₂/T₂

P₁ = P₂

V₁ = T₁×V₂/T₂ = 300.15 * 1 /750.15 = 0.4 m³

dQ = m \times c_p \times (T_2 -T_1)

For ideal gas, c_p = 5/2×R = 5/2*0.287 = 0.7175 kJ

PV = NKT

N = PV/(KT) = 100000×1/(750.15×1.38×10⁻²³)

N = 9.66×10²⁴

Number of moles of air = 9.66×10²⁴/(6.02×10²³) = 16.05 moles

The average mass of one mole of air = 28.8 g

Therefore, the total mass = 28.8*16.05 = 462.135 g = 0.46 kg

∴ dQ = 0.46*0.7175*(750.15 - 300.15) = 149.211 kJ

The power input required = The rate of heat transfer = 149.211/(60*5)

The power input required = 0.49737 kW ≈ 0.5 kW.

3 0
3 years ago
Other questions:
  • A well-insulated tank in a vapor power plant operates at steady state. Saturated liquid water enters at inlet 1 at a rate of 125
    6·2 answers
  • 1- A square-wave inverter has a dc source of 96 V and an output frequency of 60 Hz. The load is a series RL load with R = 5 Ohm
    7·1 answer
  • How does flextape adhere under water?​
    8·1 answer
  • Water is flowing in a metal pipe. The pipe OD (outside diameter) is 61 cm. The pipe length is 120 m. The pipe wall thickness is
    9·1 answer
  • A car is stopped at an entrance ramp to a freeway; its driver is preparing to merge. At a certain moment while stopped, this dri
    10·1 answer
  • A MOSFET differs from a JFET mainly because
    13·1 answer
  • Turn the motor around in the circuit. What happens?
    12·1 answer
  • How will the proposed study contribute to your career?*<br>(quantity Surveying​
    11·1 answer
  • You can safely place a jack on a floor pan to keep a vehicle steady.
    5·2 answers
  • Cual es el costo del kwh
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!