Answer:
6.88 mg
Explanation:
Step 1: Calculate the mass of ³²P in 175 mg of Na₃³²PO₄
The mass ratio of Na₃³²PO₄ to ³²P is 148.91:31.97.
175 mg g Na₃³²PO₄ × 31.97 g ³²P/148.91 g Na₃³²PO₄ = 37.6 mg ³²P
Step 2: Calculate the rate constant for the decay of ³²P
The half-life (t1/2) is 14.3 days. We can calculate k using the following expression.
k = ln2/ t1/2 = ln2 / 14.3 d = 0.0485 d⁻¹
Step 3: Calculate the amount of P, given the initial amount (P₀) is 37.6 mg and the time elapsed (t) is 35.0 days
For first-order kinetics, we will use the following expression.
ln P = ln P₀ - k × t
ln P = ln 37.6 mg - 0.0485 d⁻¹ × 35.0 d
P = 6.88 mg
Answer:
The standard enthalpy of formation of this isomer of
is -220.1 kJ/mol.
Explanation:
The given chemical reaction is as follows.


The expression for the entropy change for the reaction is as follows.
![\Delta H^{o}_{rxn}=[8\Delta H^{o}_{f}(CO_{2}) +9\Delta H^{o}_{f}(H_{2}O)]-[\Delta H^{o}_{f}(C_{8}H_{18})+ \frac{25}{2}\Delta H^{o}_{f}(O_{2})]](https://tex.z-dn.net/?f=%5CDelta%20H%5E%7Bo%7D_%7Brxn%7D%3D%5B8%5CDelta%20H%5E%7Bo%7D_%7Bf%7D%28CO_%7B2%7D%29%20%2B9%5CDelta%20H%5E%7Bo%7D_%7Bf%7D%28H_%7B2%7DO%29%5D-%5B%5CDelta%20H%5E%7Bo%7D_%7Bf%7D%28C_%7B8%7DH_%7B18%7D%29%2B%20%5Cfrac%7B25%7D%7B2%7D%5CDelta%20H%5E%7Bo%7D_%7Bf%7D%28O_%7B2%7D%29%5D)



Substitute the all values in the entropy change expression.
![-5104.1kJ/mol=[8(-393.5)+9(-241.8)kJ/mol]-[\Delta H^{o}_{f}(C_{8}H_{18})+ \frac{25}{2}(0)kJ/mol]](https://tex.z-dn.net/?f=-5104.1kJ%2Fmol%3D%5B8%28-393.5%29%2B9%28-241.8%29kJ%2Fmol%5D-%5B%5CDelta%20H%5E%7Bo%7D_%7Bf%7D%28C_%7B8%7DH_%7B18%7D%29%2B%20%5Cfrac%7B25%7D%7B2%7D%280%29kJ%2Fmol%5D)



Therefore, The standard enthalpy of formation of this isomer of
is -220.1 kJ/mol.