Answer:
Firsthand association assigns energy throughout conduction. Radiation transpires when particles consume energy that progresses as a wave. The heat will run from the h2O to the ice continuously until the ice has absolutely melted so both elements have reached the same temperature.
Explanation:
The molar mass of B(NO₃)₃ - Boron nitrate : 196.822 g/mol
<h3>Further explanation</h3>
In stochiometry therein includes
<em>Relative atomic mass (Ar) and relative molecular mass / molar mass (M) </em>
So the molar mass of a compound is given by the sum of the relative atomic mass of Ar
M AxBy = (x.Ar A + y. Ar B)
The molar mass of B(NO₃)₃ - Boron nitrate :
M B(NO₃)₃ = Ar B + 3. Ar N + 9.Ar O
M B(NO₃)₃ = 10.811 + 3. 14,0067 + 9. 15,999
M B(NO₃)₃ = 196.822 g/mol
Answer:
1.2* 10³ rNe.
Explanation:
Given speed of neon=350 m/s
Un-certainity in speed= (0.01/100) *350 =0.035 m/s
As per heisenberg uncertainity principle
Δx*mΔv ≥\frac{h}{4\pi }
4π
h
..................(1)
mass of neon atom =\frac{20*10^{-3} }{6.22*10^{-23} } =3.35*10^{-26} kg
6.22∗10
−23
20∗10
−3
=3.35∗10
−26
kg
substituating the values in eq. (1)
Δx =4.49*10^{-8}10
−8
m
In terms of rNe i.e 38 pm= 38*10^{-12}10
−12
Δx=\frac{4.49*10^{-8} }{38*10^{-12} }
38∗10
−12
4.49∗10
−8
=0.118*10^{4}10
4
* (rNe)
=1.18*10³ rN
= 1.2* 10³ rNe.
Explanation:
This is the answer
A large quantity if hydronium ions indicates an Arrhenius acid.
Answer:
Acid-base indicators are chemicals used to determine whether an aqueous solution is acidic, neutral, or alkaline. Because acidity and alkalinity relate to pH, they may also be known as pH indicators. Examples of acid-base indicators include litmus paper, phenolphthalein, and red cabbage juice.
Explanation: