Answer:
<u>0.04 °C⁻¹</u>
Explanation:
First, we need to calculate linear expansivity, then after finding that value, we can move on to finding the area expansivity.
<u />
=============================================================
Finding Linear Expansivity :
⇒ α = Final length - Original length / (Original length × ΔT)
⇒ α = 9 - 4 / (4 × 70 - 20)
⇒ α = 5 / 5 × 50
⇒ α = <u>0.02</u>
============================================================
Finding Area Expansivity :
⇒ Area Expansivity = 2 × Linear Expansivity
⇒ β = 2 × α
⇒ β = 2 × 0.02
⇒ β = <u>0.04 °C⁻¹</u>
Warm water<span> has more energy </span><span>than cold water</span>
We commonly know refer to something 'digital' has to something electronic that can be visibly seen such as a watch, clock, camera, screen, etc. It really refers to stored energy or electricity that's not natural. But the word 'digital' in science refers to the depiction of data<span> or </span>information<span> in </span>figures<span> (such as in a </span>table<span>) in contrast to as a </span>chart<span>, </span>graph<span>, </span>drawing<span>, or other pictorial </span>form.<span>
</span>
Answer:
-2.478
0.379
11.14
24.78
Explanation:
Angular frequency of spring in harmonic motion is given by?
ω = √(k/m)
ω = √(10/2.2)
ω = √4.54
ω = 2.13 s^-1
If at t=0 the mass is in negative amplitude (x = -A = -2.48 m) then we describe the position with negative cosine
x(t) = -A * cos(ωt)
x(t) = -2.48 * cos(2.13 * 1)
x(t) = -2.48 * 0.9993
x(t) = -2.478
Velocity and acceleration are 1st and 2nd derivative of position
b)
v(t) = Aω * sin(ωt)
v(t) = 2.48 * 2.13 * sin(2.13 * 1)
v(t) = 5.282 * sin2.13
v(t) = 5.282 * 0.03717
v(t) = 0.379 m/s
c)
a(t) = Aω^2 * cos(ωt)
a(t) = 2.48 * 2.12² * cos(2.13 * 1)
a(t) = 2.48 * 4.494 * cos2.13
a(t) = 11.15 * 0.9993
a(t) = 11.14 m/s²
d)
F = -k * x(t)
F = -10 * -2.478
F = 24.78 N
the sodium chloride will be a crystal
it will have a giant crystal lattice