1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
garri49 [273]
3 years ago
5

What is the definition of phase?

Engineering
1 answer:
belka [17]3 years ago
3 0

Answer:

The completely homogeneous and uniform state of matter is called  phase

Explanation:

A system has a unique set of properties at a given time, which is called a state. The state of a system does not depend on its configuration, but only on its intensive properties; if any of them vary, the state of the system will change. The mathematical relationship between the properties that characterize the state of a system is called the state equation. The completely homogeneous and uniform state of matter is called the phase. The most common phases include gases, liquids and solids. A system can also be multi-phase, the most common being the one that contains a gas phase and a liquid phase, although some systems that contain several liquid and solid phases (two liquid phases; a solid phase and a liquid phase) are also important.

You might be interested in
(35-39) A student travels on a school bus in the middle of winter from home to school. The school bus temperature is 68.0° F. Th
arlik [135]

Answer:

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

Explanation:

From Heat Transfer we determine that heat transfer rate due to electromagnetic radiation (\dot Q), measured in BTU per hour, is represented by this formula:

\dot Q = \epsilon\cdot A\cdot \sigma \cdot (T_{s}^{4}-T_{b}^{4}) (1)

Where:

\epsilon - Emissivity, dimensionless.

A - Surface area of the student, measured in square feet.

\sigma - Stefan-Boltzmann constant, measured in BTU per hour-square feet-quartic Rankine.

T_{s} - Temperature of the student, measured in Rankine.

T_{b} - Temperature of the bus, measured in Rankine.

If we know that \epsilon = 0.90, A = 16.188\,ft^{2}, \sigma = 1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}}, T_{s} = 554.07\,R and T_{b} = 527.67\,R, then the heat transfer rate due to electromagnetic radiation is:

\dot Q = (0.90)\cdot (16.188\,ft^{2})\cdot \left(1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}} \right)\cdot [(554.07\,R)^{4}-(527.67\,R)^{4}]

\dot Q = 417.492\,\frac{BTU}{h}

Under the consideration of steady heat transfer we find that the net energy transfer from the student's body during the 20 min-ride to school is:

Q = \dot Q \cdot \Delta t (2)

Where \Delta t is the heat transfer time, measured in hours.

If we know that \dot Q = 417.492\,\frac{BTU}{h} and \Delta t = \frac{1}{3}\,h, then the net energy transfer is:

Q = \left(417.492\,\frac{BTU}{h} \right)\cdot \left(\frac{1}{3}\,h \right)

Q = 139.164\,BTU

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

7 0
3 years ago
Please help me with this. Plzzz.
Drupady [299]

Answer:

450,000m = 450km = 4.5E5

32,600,000W = 32.6MW = 3.26E7

59,700,000,000cal = 59.7Gcal = 5.97E10

0.000000083s = 83ns = 8.3E-8

35,000Ω = 35kΩ = 3.5E4

Explanation:

Giga   = 1,000,000,000

Mega = 1,000,000

kilo     = 1,000

unit    = 1

deci   = .1

centi  = .01

milli    = .001

micro = .000001

nano = .0000000001

pico  = .000000000001

You should be able to look at these and convert between them in seconds if you want to pursue anything in engineering.

7 0
3 years ago
1. A glass window of width W = 1 m and height H = 2 m is 5 mm thick and has a thermal conductivity of kg = 1.4 W/m*K. If the inn
emmasim [6.3K]

Answer:

1. \dot Q=19600\ W

2. \dot Q=120\ W

Explanation:

1.

Given:

  • height of the window pane, h=2\ m
  • width of the window pane, w=1\ m
  • thickness of the pane, t=5\ mm= 0.005\ m
  • thermal conductivity of the glass pane, k_g=1.4\ W.m^{-1}.K^{-1}
  • temperature of the inner surface, T_i=15^{\circ}C
  • temperature of the outer surface, T_o=-20^{\circ}C

<u>According to the Fourier's law the rate of heat transfer is given as:</u>

\dot Q=k_g.A.\frac{dT}{dx}

here:

A = area through which the heat transfer occurs = 2\times 1=2\ m^2

dT = temperature difference across the thickness of the surface = 35^{\circ}C

dx = t = thickness normal to the surface = 0.005\ m

\dot Q=1.4\times 2\times \frac{35}{0.005}

\dot Q=19600\ W

2.

  • air spacing between two glass panes, dx=0.01\ m
  • area of each glass pane, A=2\times 1=2\ m^2
  • thermal conductivity of air, k_a=0.024\ W.m^{-1}.K^{-1}
  • temperature difference between the surfaces, dT=25^{\circ}C

<u>Assuming layered transfer of heat through the air and the air between the glasses is always still:</u>

\dot Q=k_a.A.\frac{dT}{dx}

\dot Q=0.024\times 2\times \frac{25}{0.01}

\dot Q=120\ W

5 0
3 years ago
Design a plate and frame heat exchanger for the following problem:
qwelly [4]

Answer:

See explaination and attachment.

Explanation:

Iteration method is a repetitive method applied until the desired result is achieved.

Let the given equation be f(x) = 0 and the value of x to be determined. By using the Iteration method you can find the roots of the equation. To find the root of the equation first we have to write equation like below

x = pi(x)

Let x=x0 be an initial approximation of the required root α then the first approximation x1 is given by x1 = pi(x0).

Similarly for second, thrid and so on. approximation

x2 = pi(x1)

x3 = pi(x2)

x4 = pi(x3)

xn = pi(xn-1).

please go to attachment for the step by step solution.

8 0
3 years ago
Why do we need an architect?explain briefly by focusing on its various sectors.
lara [203]

Answer:

An architect will help you determine exactly what you need and come up with inventive ideas to solve even the most complex design problems. Think of us as professional 3D problem solvers! An architect can and should lift your project out of the ordinary.

Explanation:

What are the 3 main functions of an architect?

Design: Architects must design, plan, and develop concepts to create construction plans and technical documents. These are based on client requirements and ideas. Research: Architects must learn about the different building codes, safety regulations, construction innovations and city laws that affect their designs

What are the 7 types of architecture?

There are several main types of architects who focus on different types of structures and designs.

...

Commercial Architects

Office buildings / skyscrapers.

Hotels.

Bridges.

Schools.

Museums.

Government buildings.

Multi-unit residential buildings.

Pretty much any type of building that's not a residential home.

8 0
2 years ago
Other questions:
  • Can anybody teach me how to make an app with flask and pygame together?​
    10·1 answer
  • Students are expected to respond to one of the two questions described below. Students should provide examples to clarify their
    12·1 answer
  • Stainless steel ball bearings (rho = 8085 kg/m3 and cp = 0.480 kJ/kg·°C) having a diameter of 1.2 cm are to be quenched in water
    10·2 answers
  • What are the causes of electric shock​
    13·1 answer
  • 4. Two technicians are discussing the evaporative emission monitor. Technician A says that serious monitor faults cause a blinki
    14·1 answer
  • the voltage across a 5mH inductor is 5[1-exp(-0.5t)]V. Calculate the current through the inductor and the energy stored in the i
    6·1 answer
  • What engine does chrysler 300c have?​
    15·1 answer
  • Calculate the resistance of a circuit with 1.5 A and 120 V. Use the appropriate formula from the list of formulas on the
    9·1 answer
  • HOLA COMO ESTAN TODOS
    14·1 answer
  • A technician is building a high-performance gaming pc. which two items should the technician focus on selecting parts for the ma
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!