Answer:
v_average = (d₂-d₁) / Δt
this average velocity is not necessarily the velocity of the extreme points,
Explanation:
To resolve the debate, it must be shown that the two have part of the reason, the space or distance between the two points divided by time is the average speed between the points.
v_average = (d₂-d₁) / Δt
this average velocity is not necessarily the velocity of the extreme points, in the only case that it is so is when there is no acceleration.
Therefore neither of them is right.
<u>Answer:</u> The Young's modulus for the wire is 
<u>Explanation:</u>
Young's Modulus is defined as the ratio of stress acting on a substance to the amount of strain produced.
The equation representing Young's Modulus is:

where,
Y = Young's Modulus
F = force exerted by the weight = 
m = mass of the ball = 10 kg
g = acceleration due to gravity = 
l = length of wire = 2.6 m
A = area of cross section = 
r = radius of the wire =
(Conversion factor: 1 m = 1000 mm)
= change in length = 1.99 mm = 
Putting values in above equation, we get:

Hence, the Young's modulus for the wire is 
Answer:
True
Explanation:
Pascal's law says that pressure applied to an enclosed fluid will be transmitted without a change in magnitude to every point of the fluid and to the walls of the container. The pressure at any point in the fluid is equal in all directions.