Answer:
"h" signifies Planck's constant
Explanation:
In the equation energy E = h X v
The "h" there signifies Planck's constant
Planck's constant is a value, that shows the rate at which the energy of a photon increases/decreases, as the frequency of its electromagnetic wave changes.
It was named after Max Planck who discovered this unique relationship between the energy of a light wave and its frequency.
Planck's constant, "h" is usually expressed in Joules second
Planck's constant = 
Id say d because it releases hydrogen and on the other hand a base receives it
<span />
-- reduce the length of a wire to 1/2 . . . cut the resistance in half
-- reduce the diameter to 1/4 . . . reduce the cross-section area by (1/4²) . . . increase the resistance by 16x .
-- R2 = (R1) · (1/2) · (16) = 8 · R1
<em>-- R2 / R1 = 8</em>
Answer:
magnitude of the frictional torque is 0.11 Nm
Explanation:
Moment of inertia I = 0.33 kg⋅m2
Initial angular velocity w° = 0.69 rev/s = 2 x 3.142 x 0.69 = 4.34 rad/s
Final angular velocity w = 0 (since it stops)
Time t = 13 secs
Using w = w° + §t
Where § is angular acceleration
O = 4.34 + 13§
§ = -4.34/13 = -0.33 rad/s2
The negative sign implies it's a negative acceleration.
Frictional torque that brought it to rest must be equal to the original torque.
Torqu = I x §
T = 0.33 x 0.33 = 0.11 Nm
We can find the average speed of the body by finding the total distance covered, and then dividing it by the total time of the motion.
The total distance covered is:

while the total time of the motion is

So, the average speed of the body is: