The model that should show the corresct representation of xenon gas is one in which the gas molecules are isolated and monoatomic.
<h3>What is a noble gas?</h3>
A noble gas is a member of group 18 of the periodic table. Noble gases are known not to interact with each other and occur as monoatomic particles.
The images are not shown here hence the question is incomplete. However, we do know that any of the models that show individual monoatomic particles is a representation of xenon gas.
Learn more about noble gas: brainly.com/question/2094768
The question is incomplete, here is the complete question:
At elevated temperature, nitrogen dioxide decomposes to nitrogen oxide and oxygen gas

The reaction is second order for
with a rate constant of
at 300°C. If the initial [NO₂] is 0.260 M, it will take ________ s for the concentration to drop to 0.150 M
a) 1.01 b) 5.19 c) 0.299 d) 0.0880 e) 3.34
<u>Answer:</u> The time taken is 5.19 seconds
<u>Explanation:</u>
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant = 
t = time taken = ?
[A] = concentration of substance after time 't' = 0.150 M
= Initial concentration = 0.260 M
Putting values in above equation, we get:

Hence, the time taken is 5.19 seconds
Answer:
The number of moles of the chemical constituents will be less than the actual amount.
Explanation:
In calculating empirical formula, we begin with the number of grams of each element, given in the problem.
Given that the spill will affect the mass concentration of the copper chloride solution, calculations to determine the molecular formula (using Molarity = mass conc ÷ molecular mass ) would give a lesser result, which would in turn lower the number of moles of the copper and chloride in the empirical formula calculation.
Answer:17.9 grams
Explanation:I took the quiz
Hope this helps
The answer is B.
Tetraphosphorus is written as P4, and decaiodide as I10, so when you put them together, it's P4I10