The presence of lactic acid, produced during the lactic acid fermentation is responsible for the sour taste and for the improved microbiological stability and safety of the food. This lactic acid fermentation is responsible for the sour taste of dairy products such as cheese, yoghurt and kefir.
1.<span>Western world: yogurt, sourdough breads, sauerkraut, cucumber pickles and olives.
2.</span><span>Middle East: pickled vegetables.
3.</span><span>Korea: kimchi (fermented mixture of Chinese cabbage, radishes, red pepper, garlic and ginger)
4.</span><span>Russia: kefir.
5.</span><span>Egypt: laban rayab and laban zeer (fermented milks), kishk (fermented cereal and milk mixture)
6.</span><span>Nigeria: gari (fermented cassava)
7.</span><span>South Africa : magou (fermented maize porridge)
8.</span><span>Thailand : nham (fermented fresh pork)
9.</span><span>Philippines : balao balao (fermented rice and shrimp mixture)
</span><span>Lactic acid fermentation also gives the sour taste to fermented vegetables such as traditionally cultured sauerkraut and pickles. The sugars in the cabbage are converted into lactic acid and serve as a preservative.</span>
They look like gases plasmas have no fixed shapes or volume and are less dense tan solids or liquids
Answer:
1.64x10⁻¹⁸ J
Explanation:
By the Bohr model, the electrons surround the nucleus of the atom in shells or levels of energy. Each one has it's energy, and the electron doesn't fall to the nucleus because it can reach another level of energy, and then return to its level.
When the electrons go to another level, it absorbs energy, and then, when return, this energy is released, as a photon (generally as luminous energy). The value of the energy can be calculated by:
E = hc/λ
Where h is the Planck constant (6.626x10⁻³⁴ J.s), c is the light speed (3.00x10⁸ m/s), and λ is the wavelength of the photon.
The wavelength can be calculated by:
1/λ = R*(1/nf² - 1/ni²)
Where R is the Rydberg constant (1.097x10⁷ m⁻¹), nf is the final orbit, and ni the initial orbit. So:
1/λ = 1.097x10⁷ *(1/1² - 1/2²)
1/λ = 8.227x10⁶
λ = 1.215x10⁻⁷ m
So, the energy is:
E = (6.626x10⁻³⁴ * 3.00x10⁸)/(1.215x10⁻⁷)
E = 1.64x10⁻¹⁸ J
Answer:
c =0.2 J/g.°C
Explanation:
Given data:
Specific heat of material = ?
Mass of sample = 12 g
Heat absorbed = 48 J
Initial temperature = 20°C
Final temperature = 40°C
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 40°C -20°C
ΔT = 20°C
48 J = 12 g×c×20°C
48 J =240 g.°C×c
c = 48 J/240 g.°C
c =0.2 J/g.°C
Answer:
A full moon occurs when the Moon appears as a complete circle in the sky.
Explanation:
- We see it as a full orb because the whole of the side of the Moon facing the Earth is lit up by the Sun's rays.
- The moon shows no visible light of its own, so we only see the parts of the moon that are lit up by other objects.