Answer:
D 2,2
Explanation:
We can see that there are 2 chlorines on the reactant side so there has to be a 2 on the product side
Now we have Na + Cl2 --> 2NaCl
The problem now is that there are 2 sodiums on the product side so add a 2 to the Na on the reactant side
2Na + Cl2 --> 2NaCl
Now it's balanced!
<span>Scientists ignore the forces of attraction between particles in a gas under ordinary conditions</span><span> because the particles in a gas are apart and moving fast, rather than clustered and moving slow, therefore the forces of attraction are too weak to have a visible effect.</span>
Answer:
A. 6atm
Explanation:
Using pressure law equation:
P1/T1 = P2/T2
Where;
P1 = initial pressure (atm)
T1 = initial temperature (K)
P2 = final pressure (atm)
T2 = final temperature (K)
According to this question;
P1 = 3 atm
P2 = ?
T1 = 120K
T2 = 240K
Using P1/T1 = P2/T2
3/120 = P2/240
Cross multiply
240 × 3 = P2 × 120
720 = 120P2
P2 = 720/120
P2 = 6atm
The correct answer is radiant, radiant that get transferred into chemical energy
Answer:
A) 8.00 mol NH₃
B) 137 g NH₃
C) 2.30 g H₂
D) 1.53 x 10²⁰ molecules NH₃
Explanation:
Let us consider the balanced equation:
N₂(g) + 3 H₂(g) ⇄ 2 NH₃(g)
Part A
3 moles of H₂ form 2 moles of NH₃. So, for 12.0 moles of H₂:

Part B:
1 mole of N₂ forms 2 moles of NH₃. And each mole of NH₃ has a mass of 17.0 g (molar mass). So, for 4.04 moles of N₂:

Part C:
According to the <em>balanced equation</em> 6.00 g of H₂ form 34.0 g of NH₃. So, for 13.02g of NH₃:

Part D:
6.00 g of H₂ form 2 moles of NH₃. An each mole of NH₃ has 6.02 x 10²³ molecules of NH₃ (Avogadro number). So, for 7.62×10⁻⁴ g of H₂:
