Answer:
Explanation:
We can only talk about resonance hybrid for a compound in which more than one structure is possible based on its observed chemical properties.
There are compounds whose chemical properties can not be satisfactorily explained on the basis of a single chemical structure. In the case of such compounds, we invoke the idea of resonance.
A resonance hybrid is a single structure drawn to represent a given chemical specie which exhibits resonance behaviour and can otherwise be represented on paper in the form of an average of two or more chemical structures separated each from the next by a double-headed arrow.
Answer:
10.945 x 10^-4
Explanation:
Balanced equation:
Mn(OH)2 + 2 HCl --> MnCl2 + H2O
it takes 2 moles HCL for each mole Mn(OH)2
Next find the molarity of the Mn(OH)2 solution
= (1 mole Mn(OH)2 / 2 mole HCl) X (0.0020 mole HCl / 1000ml) X (4.86 ml)
= 4.86 x 10^-3 mole
this is now dissolved in (70 + 4.86) = 74.86 ml or 0.07486 L
thus [Mn(OH)2] = 4.86 x 10^-3 mole / 0.07486 L = 0.064921 M
Ksp = [Mn2+][OH-]^2 = 4x^3 = 4(0.064921)^3 = 10.945 x 10^-4
<u>Answer:</u> The molarity of Iron (III) chloride is 0.622 M.
<u>Explanation:</u>
Molarity is defined as the number of moles present in one liter of solution. The equation used to calculate molarity of the solution is:

Or,

We are given:
Mass of iron (III) chloride = 1.01 g
Molar mass of iron (III) chloride = 162.2 g/mol
Volume of the solution = 10 mL
Putting values in above equation, we get:

Hence, the molarity of Iron (III) chloride is 0.622 M.
Answer:
C. 1.35
Explanation:
2NH3 (g) <--> N2 (g) + 3H2 (g)
Initial concentration 2.2 mol/0.95L 1.1 mol/0.95L 0
change in concentration 2x x 3x
-0.84 M +0.42M +1.26M
Equilibrium 1.4 mol/0.95L=1.47M 1.58 M 1.26 M
concentration
Change in concentration(NH3) = (2.2-1.4)mol/0.95 L = 0.84M
Equilibrium concentration (N2) = 1.1/0.95 +0.42=1.58 M
Equilibrium concentration(NH3) = 1.4/0.95 = 1.47M
K = [N2]*{H2]/[NH3] = 1.58M*1.26M/1.47M = 1.35 M