Answer: The final concentration of aluminum cation is 0.335 M.
Explanation:
Given:
= 47.8 mL (1 mL = 0.001 L) = 0.0478 L
= 0.321 M,
= 21.8 mL = 0.0218 L,
= 0.366 M
As concentration of a substance is the moles of solute divided by volume of solution.
Hence, concentration of aluminum cation is calculated as follows.
![[Al^{3+}] = \frac{M_{1}V_{1} + M_{2}V_{2}}{V_{1} + V_{2}}](https://tex.z-dn.net/?f=%5BAl%5E%7B3%2B%7D%5D%20%3D%20%5Cfrac%7BM_%7B1%7DV_%7B1%7D%20%2B%20M_%7B2%7DV_%7B2%7D%7D%7BV_%7B1%7D%20%2B%20V_%7B2%7D%7D)
Substitute the values into above formula as follows.
![[Al^{3+}] = \frac{M_{1}V_{1} + M_{2}V_{2}}{V_{1} + V_{2}}\\= \frac{0.321 M \times 0.0478 L + 0.366 M \times 0.0218 L}{0.0478 L + 0.0218 L}\\= \frac{0.0153438 + 0.0079788}{0.0696}\\= 0.335 M](https://tex.z-dn.net/?f=%5BAl%5E%7B3%2B%7D%5D%20%3D%20%5Cfrac%7BM_%7B1%7DV_%7B1%7D%20%2B%20M_%7B2%7DV_%7B2%7D%7D%7BV_%7B1%7D%20%2B%20V_%7B2%7D%7D%5C%5C%3D%20%5Cfrac%7B0.321%20M%20%5Ctimes%200.0478%20L%20%2B%200.366%20M%20%5Ctimes%200.0218%20L%7D%7B0.0478%20L%20%2B%200.0218%20L%7D%5C%5C%3D%20%5Cfrac%7B0.0153438%20%2B%200.0079788%7D%7B0.0696%7D%5C%5C%3D%200.335%20M)
Thus, we can conclude that the final concentration of aluminum cation is 0.335 M.
Phương trình hóa học: 2Mg+O2->2Mgo
Answer:
hydrogen bonding
Explanation:
The two strands of DNA are held together by hydrogen bonds between complimentary nucleotides.
The pH of the buffer is 6.1236.
Explanation:
The strength of any acid solution can be obtained by determining their pH. Even the buffer solution strength of the weak acid can be determined using pH. As the dissociation constant is given, we can determine the pKa value as the negative log of dissociation constant value.
![pKa=-log[H] = - log [ 5.66 * 10^{-7}]\\ \\pka = 7 - log (5.66)=7-0.753=6.247\\\\pka = 6.247](https://tex.z-dn.net/?f=pKa%3D-log%5BH%5D%20%3D%20-%20log%20%5B%205.66%20%2A%2010%5E%7B-7%7D%5D%5C%5C%20%5C%5Cpka%20%3D%207%20-%20log%20%285.66%29%3D7-0.753%3D6.247%5C%5C%5C%5Cpka%20%3D%206.247)
The pH of the buffer can be known as
![pH = pK_{a} + log[\frac{[A-]}{[HA]}}]](https://tex.z-dn.net/?f=pH%20%3D%20pK_%7Ba%7D%20%2B%20log%5B%5Cfrac%7B%5BA-%5D%7D%7B%5BHA%5D%7D%7D%5D)
The concentration of ![[A^{-}] = Moles of [A]/Total volume = 0.608/2 = 0.304 M\\](https://tex.z-dn.net/?f=%5BA%5E%7B-%7D%5D%20%3D%20Moles%20of%20%5BA%5D%2FTotal%20volume%20%3D%200.608%2F2%20%3D%200.304%20M%5C%5C)
Similarly, the concentration of [HA] = 
Then the pH of the buffer will be
pH = 6.247 + log [ 0.304/0.404]

So, the pH of the buffer is 6.1236.
Answer:
0.3808
Explanation:
number of moles,n=Conc.XVol.
hence 0.85X0.448