Answer:
Isabella will not be able to spray Ferdinand.
Explanation:
We'll begin by calculating the time taken for the water to get to the ground from the hose held at 1 m above the ground. This can be obtained as follow:
Height (h) = 1 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =.?
h = ½gt²
1 = ½ × 9.8 × t²
1 = 4.9 × t²
Divide both side by 4.9
t² = 1/4.9
Take the square root of both side
t = √(1/4.9)
t = 0.45 s
Next, we shall determine the horizontal distance travelled by the water. This can be obtained as follow:
Horizontal velocity (u) = 3.5 m/s
Time (t) = 0.45 s
Horizontal distance (s) =?
s = ut
s = 3.5 × 0.45
s = 1.58 m
Finally, we shall compare the distance travelled by the water and the position to which Ferdinand is located to see if they are the same or not. This is illustrated below:
Ferdinand's position = 10 m
Distance travelled by the water = 1.58 m
From the above, we can see that the position of the water (i.e 1.58 m) and that of Ferdinand (i.e 10 m) are not the same. Thus, Isabella will not be able to spray Ferdinand.
The answer is 24N. Since the body is moving with constant velocity all the forces must balance (equal & opposite)
when wire is coiled upon a nail then it will posses magnetic characteristics
This is due to the coiled shape it will behave like a solenoid and the magnetic field of solenoid is given as

so here when wire is coiled up on a nail then due to the magnetic field of the coil the nail will attain magnetic characteristic.
so correct answer will be
<em>Possess magnetic properties </em>
Solution :
Frequency may be defined as the number of observation or number of waves that is taken in per unit time. The unit of frequency is Hertz or Hz.
It is given that :
Successive harmonic frequencies, f = 52.2 Hz
and f' = 60.9 Hz
Therefore, fundamental frequency, F = f' - f
F = 60.9 - 52.2
F = 8.7 Hz
Therefore the string which is fixed at both the ends forms all the harmonics.
<span>Answer: Answer is The direction of the electric field is always directed in the direction that a positive test charge would be pushed or pulled if placed in the space surrounding the source charge.</span>