The comparison of the forces in a small nucleus to the forces of a large one is the fact that they are capable of holding the protons and neutrons which made it no matter what their size may be. Therefore, as long as there is a nucleus, their forces can both hold together the two atoms tight.
Answer:
6
Explanation:
Number of lines emanate from + 5 micro coulomb is 15 .
They terminates at negative charges that means at - 3 micro coulomb and - 2 micro Coulomb.
the electric field lines terminates at - 3 micro Coulomb and - 2 micro Coulomb is in the ratio of 3 : 2.
So the lines terminating at - 3 micro coulomb
= 
So the lines terminating at - 2 micro coulomb
= 
So, the number of filed lines terminates at - 2 micro Coulomb are 6.
<u>Answer:</u> The ball is travelling with a speed of 5.5 m/s after hitting the <u>bottle.</u>
<u>Explanation:</u>
To calculate the speed of ball after the collision, we use the equation of law of conservation of momentum, which is given by:

where,
are the mass, initial velocity and final velocity of ball.
are the mass, initial velocity and final velocity of bottle.
We are given:

Putting values in above equation, we get:

Hence, the ball is travelling with a speed of 5.5 m/s after hitting the bottle.
Answer:
A) If you halve the wavelength, the electromagnetic radiation energy will double.
B) The energy of the electromagnetic radiation will halve if you halve the wavenumber.
C) When the frequency of the light is doubled, its energy will double.
Explanation:
The function for the light frequency is given as
The energy supplied to each electron is doubled by halving the wavelength, nearly doubling its kinetic energy by two after it is free from the metal. It is important to remember that for a given period of time, the number of electrons ejected will remain constant.
Cheers
Answer:
can't tell if this is question, it is not written correctly
Explanation:
Electrical conductivity is the measure of a material's ability to allow the transport of an electric charge. Its SI is the siemens per meter, (A2s3m−3kg−1) (named after Werner von Siemens) or, more simply, Sm−1. It is the ratio of the current density to the electric field strength.