Answer:
Q= 4.6 × 10⁻³ m³/s
actual velocity will be equal to 8.39 m/s
Explanation:
density of fluid = 900 kg/m³
d₁ = 0.025 m
d₂ = 0.05 m
Δ P = -40 k N/m²
C v = 0.89
using energy equation

under ideal condition v₁² = 0
v₂² = 88.88
v₂ = 9.43 m/s
hence discharge at downstream will be
Q = Av
Q =
Q =
Q= 4.6 × 10⁻³ m³/s
we know that

hence , actual velocity will be equal to 8.39 m/s
Answer:

Explanation:
From the information given:
Life requirement = 40 kh = 40 
Speed (N) = 520 rev/min
Reliability goal
= 0.9
Radial load
= 2600 lbf
To find C10 value by using the formula:

where;


The Weibull parameters include:



∴
Using the above formula:


![C_{10} = 3640 \times \bigg[\dfrac{1248}{0.9933481582}\bigg]^{\dfrac{3}{10}}](https://tex.z-dn.net/?f=C_%7B10%7D%20%3D%203640%20%5Ctimes%20%5Cbigg%5B%5Cdfrac%7B1248%7D%7B0.9933481582%7D%5Cbigg%5D%5E%7B%5Cdfrac%7B3%7D%7B10%7D%7D)

Recall that:
1 kN = 225 lbf
∴


To solve this problem it is necessary to apply the concepts related to density in relation to mass and volume for each of the states presented.
Density can be defined as

Where
m = Mass
V = Volume
For state one we know that




For state two we have to




Therefore the total change of mass would be



Therefore the mass of air that has entered to the tank is 6.02Kg
Answer:
a)
, b)
, c) 
Explanation:
A turbine is a steady-state devices which transforms fluid energy into mechanical energy and is modelled after the Principle of Mass Conservation and First Law of Thermodynamics, whose expressions are described hereafter:
Mass Balance

Energy Balance

Specific volumes and enthalpies are obtained from property tables for steam:
Inlet (Superheated Steam)


Outlet (Liquid-Vapor Mix)


a) The mass flow rate of the steam is:



b) The exit velocity of steam is:




c) The power output of the steam turbine is:


