<span>Decomposition reaction.</span>
Answer:
(i) specific heat
(ii) latent heat of vaporization
(iii) latent heat of fusion
Explanation:
i. Q = mcΔT; identify c.
Here, Q is heat, m is the mass, c is the specific heat and ΔT is the change in temperature.
The amount of heat required to raise the temperature of substance of mass 1 kg by 1 degree C is known as the specific heat.
ii. Q = mLvapor; identify Lvapor
Here, Q is the heat, m is the mass and L is the latent heat of vaporization.
The amount of heat required to convert the 1 kg liquid into 1 kg vapor at constant temperature.
iii. Q = mLfusion; identify Lfusion
Here, Q is the heat, m is the mass and L is the latent heat of fusion.
Here, Q is the heat, m is the mass and L is the latent heat of vaporization.
The amount of heat required to convert the 1 kg solid into 1 kg liquid at constant temperature.
The animals have to adapt to their new environment meant and continue mating so they do not go extinct
Answer:
D is the best choice. Those percentages, are giving you the information about how concentrated are the solutions. As 0.015 is so concentrated, this solution will damage the structures more quickly
Explanation:
Answer:
67.5%
Explanation:
Step 1: Write the balanced equation for the electrolysis of water
2 H₂O ⇒ 2 H₂ + O₂
Step 2: Calculate the theoretical yield of O₂ from 17.0 g of H₂O
According to the balanced equation, the mass ratio of H₂O to O₂ is 36.04:32.00.
17.0 g H₂O × 32.00 g O₂/36.04 g H₂O = 15.1 g O₂
Step 3: Calculate the percent yield of O₂
Given the experimental yield of O₂ is 10.2 g, we can calculate its percent yield using the following expression.
%yield = (exp yield / theoret yield) × 100%
%yield = (10.2 g / 15.1 g) × 100% = 67.5%