Answer:
106.24 kJ.
Explanation:
Given that,
Mass of sample of sand, m = 8 kg
Specific heat of sand, c = 664 J/kg-°C
The temperature changes from 20° C to 40° C. We need to find the change in thermal energy. It is given by :

So, the change in thermal energy is 106.24 kJ.
We can solve this problem using <span>Hagen–Poiseuille equation. Derivation of this equation is a bit complicated so I will just write down the equation.
</span>

This equation gives you the pressure drop <span>in an </span>incompressible<span> and </span>Newtonian<span> fluid in </span>laminar flow<span> flowing through a long cylindrical pipe of the constant cross section.
L is the length of the cylinder, Q is the volumetric flow rate, R is the radius of the pipe, and

is dynamic viscosity.
Dynamic viscosity of water at 20 Celsius is 0.001 PaS.
Now we can calculate the pressure drop:
</span>

<span>
</span>
Answer:The force of buoyancy equals density of liquid times acceleration due to gravity times volume of liquid replaced. So buoyancy is directly proportional to gravity, and you would float just as well in 5G as 1G. ... A simpler way to look at it is: you float because gravity attracts water more than it attracts your body.
Explanation: i dont know if this helps i hope it does have a nice day.
Answer is MOST LIKELY C. i'm not sure because i'm taking physics right now
To determine the diameter of the earth in metres first multiply the original value by 2.
6378 X 2 = 12 756 km.
Then convert km - m
1 km = 1000 m
12 756 km = ? m
12 756 • 1000 = 12 756 000 = 12 756 000 m or 1.2756 X 10 ^ 7 m
The final solution for the diameter is 1.2756 X 10 ^ 7 m.