Repeat the experiment to make sure it gives the same results.
Hope i helped ; )
Answer:
the work required to turn the crank at the given revolutions is 8,483.4 J
Explanation:
Given;
torque required to turn the crank, T = 4.50 N.m
number of revolutions, = 300 turns
The work required to turn the crank is given as;
W = 2πT
W = 2 x 3.142 x 4.5
W = 28.278 J
1 revolution = 28.278 J
300 revlotions = ?
= 300 x 28.278 J
= 8,483.4 J
Therefore, the work required to turn the crank at the given revolutions is 8,483.4 J
I think it might be a or d i hope i have helped :)
The shades are very different
Answer: A projectile which is fired horizontally is being constantly acted upon by acceleration due to gravity, acting vertically downwards. Hence, it does not follow a straight line path. Also Why a projectile fixed along the horizontal not follow a straight line path? Because the projectile fired horizontally is constantly acts upon by acceleration due to gravity acting vertically downwards.
Explanation:
Hope this helped :)