Answer:
The atomic number represents the number of protons
Explanation:
Answer #1 is "there is 2.5 grams of solute in every 100 g of solution."
We calculate for 2.5% by mass solution by dividing the mass of the solute by the mass of the solution and then multiply by 100.
Answer #2 is "that mass ratio would be 2.5/100 or 2.5 grams of solute/100 grams of solution."
We weigh out 2.5 grams of solute and then add 97.5 grams of solvent to make a total of 100 gram solution, that is,
mass of solute / mass of solution = 2.5g solute / (2.5g solute + 97.5g solvent)
= 2.5g solute / 100g solution
Answer#3 is "a solution mass of 1 kg is 10 times greater than 100 g, thus one kilogram (1 kg) of a 2.5% ki solution would contain 25 grams of ki."
We multiply 10 to each mass so that 100 grams becomes 1000grams since 1000 grams is equal to 1 kg:
mass of solute / mass of solution = 2.5g*10/[(2.5g*10) + (97.5g*10)]
= 25g solute/(25g solute + 975g solvent)
= 25g solute/1000g solution
= 25g solute/1kg solution
C. a chemical reaction occurred when the two liquids were mixed
Answer:
C₂Cl₄
Explanation:
To know if free rotation around a bond in a compound is possible, we need to see the structure of the compound (picture in attachment).
In single bonds, which are formed by σ bonds, the atoms are not fixed in a single position, and free rotation is permitted.
Double and triple bonds are formed by a σ bond and one or two π bonds, respectively. These bonds do not allow rotation, since it is not possible to twist the ends without breaking the π bond.
The chloroethylene (C₂Cl₄) has two carbons with an sp2-sp2 hybridization, they are bonded together by a double bond. <u>Free rotation on this bond is not possible, because six atoms, including the carbon atoms, doubly bonded and the four chlorine atoms bonded to them, must be on the same plane. </u>