Answer:
1. It may change the direction of an object in motion.
2. It may cause change in velocity of an object in motion.
Explanation:
1.It may change the direction of an object in motion.
When an object is in motion,an applied force on that object may change its direction.
For example, a sailboat moving eastward, can suddenly change its direction by interaction of a storm wind blowing form the south.
2. It may cause change in velocity of an object in motion .
A force applied to an object in motion can increase or decrease its speed. When the force is applied to the object in motion in the direction of that object, its velocity may increase.
On the other hand, when the force is applied in the opposite direction to the object in motion, its velocity may reduce.
Answer:
For a relative frequency distribution, relative frequency is computed as the class frequency divided by the number of observations.
Yes it does (not to be mean its kinda stupid for you to ask)
Answer:
11:1
Explanation:
At constant acceleration, an object's position is:
y = y₀ + v₀ t + ½ at²
Given y₀ = 0, v₀ = u, and a = -g:
y = u t − ½g t²
After 6 seconds, the ball reaches the maximum height (v = 0).
v = at + v₀
0 = (-g)(6) + u
u = 6g
Substituting:
y = 6g t − ½g t²
The displacement between t=0 and t=1 is:
Δy = [ 6g (1) − ½g (1)² ] − [ 6g (0) − ½g (0)² ]
Δy = 6g − ½g
Δy = 5½g
The displacement between t=6 and t=7 is:
Δy = [ 6g (7) − ½g (7)² ] − [ 6g (6) − ½g (6)² ]
Δy = (42g − 24½g) − (36g − 18g)
Δy = 17½g − 18g
Δy = -½g
So the ratio of the distances traveled is:
(5½g) / (½g)
11 / 1
The ratio is 11:1.
Answer:
0 J
Explanation:
Kinetic energy is defined as:
KE = 1/2 m v²
where m is mass and v is velocity.
The car starts at rest, so it has zero velocity. Therefore, its initial kinetic energy is 0 J.