White light is what the eye sees when wavelengths of all colours reach the eye.
It is a combination of Red, Blue and Green wavelengths of light, that is perceived as white.
Answer is: pH value of solution of NaC₂H₃O₂ is 9.07.
Chemical reaction: C₂H₃O₂⁻ + H₂O ⇄ HC₂H₃O₂ + OH⁻.
Ka(HC₂H₃O₂) = 1,8·10⁻⁵.<span>
Ka · Kb = Kw.
</span>1,8·10⁻⁵ mol/dm³ · Kb = 1·10⁻¹⁴ mol²/dm⁶; the ionic product of water at 25°C.<span>
Kb(</span>C₂H₃O₂⁻)
= 1·10⁻¹⁴ mol²/dm⁶ ÷ 1,8·10⁻⁵ mol/dm³.<span>
Kb(</span>C₂H₃O₂⁻) =
5,56·10⁻¹⁰ mol/dm³.
c(C₂H₃O₂⁻) = 0,25 M.
[OH⁻] = [HC₂H₃O₂] = x.
[C₂H₃O₂⁻] = 0,25 M - x.
Kb = [OH⁻] · [HC₂H₃O₂] / [C₂H₃O₂⁻].
5,56·10⁻¹⁰ = x² / (0,25 M -x).
Solve quadratic equation: x = [OH⁻] = 0,0000118 M.
pOH = -log[OH⁻] = -log(0,0000118M) = 4,93.
pH + pOH = 14.
pH = 14 - 4,93 = 9,07.
Answer:
=16.49 L
Explanation:
Using the equation
P1= 0.6atm V1= 30L, T1= 25+273= 298K, P2= 1atm, V2=? T2= 273
P1V1/T1= P2V2/T2
0.6×30/298= 1×V2/273
V2=16.49L
Answer:

Explanation:
Hello,
In this case, we write the reaction again:

In such a way, the first thing we do is to compute the reacting moles of lead (II) nitrate and potassium iodide, by using the concentration, volumes, densities and molar masses, 331.2 g/mol and 166.0 g/mol respectively:

Next, as lead (II) nitrate and potassium iodide are in a 1:2 molar ratio, 0.04635 mol of lead (II) nitrate will completely react with the following moles of potassium nitrate:

But we only have 0.07885 moles, for that reason KI is the limiting reactant, so we compute the yielded grams of lead (II) iodide, whose molar mass is 461.01 g/mol, by using their 2:1 molar ratio:

Best regards.