Answer:
Plasma
Explanation:
A Coronal Mass Ejection (CME) is an outburst of energy that occurs near the outer part of the sun's atmosphere which causes a production of plasma along with a magnetic field.
The outermost part of the sun's atmosphere is called the Solar Corona Although difficult to see, the corona can be seen during a total solar eclipse.
Plasma from CME are clouds of magnetized electrically charged particles which the solar wind causes to travel at a speed of 1.6 million km/hr.
Answer:
1.17 m
Explanation:
From the question,
s₁ = vt₁/2................ Equation 1
Where s₁ = distance of the reflecting object for the first echo, v = speed of the sound in air, t₁ = time to dectect the first echo.
Given: v = 343 m/s, t = 0.0115 s
Substitute into equation 1
s₁ = (343×0.0115)/2
s₁ = 1.97 m.
Similarly,
s₂ = vt₂/2.................. Equation 2
Where s₂ = distance of the reflecting object for the second echo, t₂ = Time taken to detect the second echo
Given: v = 343 m/s, t₂ = 0.0183 s
Substitute into equation 2
s₂ = (343×0.0183)/2
s₂ = 3.14 m
The distance moved by the reflecting object from s₁ to s₂ = s₂-s₁
s₂-s₁ = (3.14-1.97) m = 1.17 m
Maybe number 4 could help.
1) The average velocity is 
2) The instantaneous velocity is 
Explanation:
1)
The average velocity of an object is given by

where
d is the displacement
t is the time elapsed
In this problem, the position of the particle is given by the function

where t is the time.
The position of the particle at time t = 6 sec is

While the position at time t = 12 sec is

So, the displacement is

And therefore the average velocity is

2)
The instantaneous velocity of a particle is given by the derivative of the position vector.
The position vector is

By differentiating with respect to t, we find the velocity vector:

Therefore, the instantaaneous velocity at any time t can be found by substituting the value of t in this expression.
Learn more about velocity:
brainly.com/question/5248528
#LearnwithBrainly
True is the correct answer