I think it’s D the melting point everything else doesn’t really make sense
Answer:

Explanation:
A solution of a weak base and its conjugate acid is a buffer.
The equation for the equilibrium is

The Henderson-Hasselbalch equation for a basic buffer is
![\text{pOH} = \text{p}K_{\text{b}} + \log\dfrac{[\text{BH}^{+}]}{\text{[B]}}](https://tex.z-dn.net/?f=%5Ctext%7BpOH%7D%20%3D%20%5Ctext%7Bp%7DK_%7B%5Ctext%7Bb%7D%7D%20%2B%20%5Clog%5Cdfrac%7B%5B%5Ctext%7BBH%7D%5E%7B%2B%7D%5D%7D%7B%5Ctext%7B%5BB%5D%7D%7D)
Data:
[B] = 0.400 mol·L⁻¹
[BH⁺] = 0.250 mol·L⁻¹
Kb = 4.4 × 10⁻⁴
Calculations:
(a) Calculate pKb
pKb = -log(4.4× 10⁻⁴) = 3.36
(b) Calculate the pH

Answer:
The most appropriate structure given the sparse spectral data is<u><em> 4-acetyl benzoic acid (see attached).</em></u>
Explanation:
It is difficult to accurately elucidate the structure of this compound without its chemical formula. But from the 1H NMR spectral data shows a total of 8 hydrogen atoms:
- 12.71 (1H. s) - confirms presence of carboxylic acid proton, C=O-OH
- 8.04 (2H, d) - confirms aromatic hydrogen
- 7.30 (2H, d) - confirms aromatic hydrogen
- 2.41 (3H,s) - confirms C=C hydrogen or ketone O=C-RCH3
The attached files show the structure and the neighboring hydrogen atoms.
<u>The most likely structure i 4-acetyl benzoic acid</u>
Answer: -
The next low tide occur at 12 noon, because the coastline will turn 90 degrees from the moon.
Explanation: -
Time taken for the earth to rotate = 24 hours.
Each day there are two high tides and low tides.
Thus the duration between two high tides is 12 hours and between 1 high tide and 1 low tide is 6 hours.
Thus the time of next low tide is 6 am + 6 hours = 12 noon.
Now in 24 hours the coastline turns 360 degrees.
In 6 hours it will travel (360 x 6) / 24 =90 degrees.
Thus the next low tide occur at 12 noon, because the coastline will turn 90 degrees from the moon.
Answer:
(a) The equilibrium partial pressure of BrCl (g) will be greater than 2.00 atm.
Explanation:
Q is the coefficient of the reaction and is calculated the same of the way of the equilibrium constant, but using the concentrations or partial pressures in any moment of the reaction, so, for the reaction given:
Q = (pBrCl)²/(pBr₂*pCl₂)
Q = 2²/(1x1)
Q = 4
As Q < Kp, the reaction didn't reach the equilibrium, and the value must increase. As we can notice by the equation, Q is directly proportional to the partial pressure of BrCl, so it must increase, and be greater than 2.00 atm in the equilibrium.
The partial pressures of Br₂ and Cl₂ must decrease, so they will be smaller than 1.00 atm. And the total pressure must not change because of the stoichiometry of the reaction: there are 2 moles of the gas reactants for 2 moles of the gas products.
Because is a reversible reaction, it will not go to completion, it will reach an equilibrium, and as discussed above, the partial pressures will change.