<span>The student should
follow following steps to make 1 L of </span>2.0 M CaCl₂.<span>
<span>
1. First he should
calculate the number of moles of 2.0 M CaCl</span></span>₂ in 1 L solution.<span>
</span>Molarity of the solution = 2.0 M<span>
Volume of solution which should be prepared = 1 L
Molarity =
number of moles / volume of the solution
Hence, number of moles in 1 L = 2 mol
2. Find
out the mass of dry CaCl</span>₂ in 2 moles.<span>
moles =
mass / molar mass
Moles of CaCl₂ =
2 mol</span><span>
Molar mass of CaCl₂ = </span><span>110.98 g/mol
Hence, mass of CaCl</span>₂ = 2 mol x <span>110.98 g/mol
= 221.96
g
3. Weigh the mass
accurately
4. Then take a cleaned and dry1 L volumetric flask and place a funnel top of it. Then carefully add the salt into the volumetric flask and
finally wash the funnel and watch glass
with de-ionized water. That water also should be added into the volumetric
flask.
5. Then add some
de-ionized water into
the volumetric flask and swirl well until all salt are
dissolved.
<span>6. Then top up to
mark of the volumetric flask carefully.
</span></span>
7. As the final step prepared solution should be labelled.
(2.32g/cm³) x (1kg/1000g)x(1 000 000 cm³/1m³) = 2320 kg/m³
1 ml= 1 cm³
Answer:
0.0140 M H₂C₆H₆O₆.
Explanation:
- We should mention the relation: <em>Ka = α²C,</em>
Where, Ka is the dissociation constant of the acid.
α is the degree of ionization of the acid.
C is the concentration if the acid.
<em>The percent of ionization (α %) = α x 100.</em>
α = √Ka/C
∴ α is inversely proportional to the concentration of the acid.
<em>So, the acid with the lowest concentration has the greatest percent ionization.</em>
Answer:
<h2>69.3 g</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
mass = Density × volume
From the question we have
volume = 55 mL
density = 1.26 g/mL
mass = 1.26 × 55 = 69.3 g
We have the final answer as
<h3>69.3 g</h3>
Hope this helps you