To find pH, use the following formula ---> pH= - log [H+]
so first we need to calculate the [H+] concentration using the OH concentration. to do this, we need to use this formula--> 1.0x10-14= [H+] X [OH-], so we solve for H+ and plug in
[H+]= 1.0X10-14/[OH-]---> 1.0 x 10-14/ 1.0 x 10-4= 1.0 x 10-10
now that we have the H+ concentration, we can solve of pH
pH= -log (1.0x10-10)= 10
answer is A
Answer:
4800
Explanation:
using my Cal ex to solve the question
calculation goes like this
2*300*8=4800
Answer:
The correct answer is option C
Explanation:
According to Heisenberg's principle "At the instant of time when the position is determined, that is, at the instant when the photon is scattered by the electron, the electron undergoes a discontinuous change in momentum. This change is the greater the smaller the wavelength of the light employed, i.e., the more exact the determination of the position. At the instant at which the position of the electron is known, its momentum therefore can be known only up to magnitudes which correspond to that discontinuous change; thus, the more precisely the position is determined, the less precisely the momentum is known".
Hence, this principle made scientists to realize that electrons could not be located in defined orbits which a contradictory of Bohr's model.
-70°C
Sink
little
hydrogen bonding
Explanation:
Completing the statements:
Water's boiling point would have been close to -70°C. Ice would sink in water. Water would release little heat to warm land during the winter. Ice is less dense than water because of the hydrogen bonding that forms a hexagonal structure in water.
The unique property of water is as a result of its hydrogen bonding. Water is a polar covalent compound. Like most covalent compound, water would have naturally had a very low boiling point.
The intermolecular forces all hydrogen bonding gives water its unique nature.
Hydrogen bond is formed by an attraction between hydrogen one water water molecule and more electronegative atom on another molecule usually oxygen, nitrogen and fluorine.
They form very strong intermolecular interaction responsible for the behavior of water.
The higher specific heat capacity of water is due to this bond. It absorbs a lot of heat and does not release them on time. This causes water release heat during winter.
Water has a hexagonal shape or structure linking each molecules.
learn more;
Hydrogen bonding brainly.com/question/10602513
#learnwithBrainly