Answer:
v₂ = v/1.5= 0.667 v
Explanation:
For this exercise we will use the conservation of the moment, for this we will define a system formed by the two students and the cars, for this isolated system the forces during the contact are internal, therefore the moment conserves.
Initial moment before pushing
p₀ = 0
Final moment after they have been pushed
= m₁ v₁ + m₂ v₂
p₀ = 
0 = m₁ v₁ + m₂ v₂
m₁ v₁ = - m₂ v₂
Let's replace
M (-v) = -1.5M v₂
v₂ = v / 1.5
v₂ = 0.667 v
Answer:
The field of view is reduced.
Explanation:
Given that,
The field of view for every resultant magnification like you change objectives from 4 to 10 to 43.
We know that,
Field of view :
When the view is observed at a point in a defined field then these field called field of view.
The normal angle of field of view is 90°.
The formula of field of view is define as,

We can say that,
The field of view is inversely proportional to the magnification.
When magnification is low then field of view will be large.
When magnification is higher then field of view will be small .
According to question,
When the magnification adjust from 4 to 10 to 43, the field of view is reduced.
Hence, The field of view is reduced.
Answer: particles move closer together
Explanation: If the motion of particles slows the particles move closer together. This is because the attraction between them pulls them toward each other. Strong attractive forces hold particles close together. As the motion of particles increases, particles move further apart.
a) Cumulus is 100% the correct answer
Answer:
a 
b
Explanation:
Generally the force constant is mathematically represented as

substituting values given in the question
=> 
=> 
Generally the workdone in stretching the spring 3.5 m is mathematically represented as

=> 
=> 
Generally the workdone in compressing the spring 2.5 m is mathematically represented as
=>
=>