A. Thermal Expansion
Hope this helps :)
Answer:
11.3 g of H₂O will be produced.
Explanation:
The combustion is:
2C₈H₁₈ + 25O₂→ 16CO₂ + 18H₂O
First of all, we determine the moles of the reactants in order to find out the limiting reactant.
8 g / 114g/mol = 0.0701 moles of octane
37g / 32 g/mol = 1.15 moles of oxygen
The limiting reagent is the octane. Let's see it by this rule of three:
25 moles of oxygen react to 2 moles of octane so
1.15 moles of oxygen will react to ( 1.15 . 2)/ 25 = 0.092 moles of octane.
We do not have enough octane, we need 0.092 moles and we have 0.0701 moles. Now we work with the stoichiometry of the reaction so we make this rule of three:
2 moles of octane produce 18 moles of water
Then 0.0701 moles of octane may produce (0.0701 . 18)/2= 0.631 moles of water.
We convert the moles to mass → 0.631 mol . 18 g/1mol = 11.3 g of H₂O will be produced.
Answer:
82500000000000000000000000
Explanation:
This is the only answer I can come up with.
Answer: Option (c) is the correct answer.
Explanation:
It is known that when we tend to dilute an impure product with too much of solvent then it will lead to dissolution of the solute. As a result, the chances of formation of crystal reduces.
And, when we increase the temperature then there will occur increase in the number of collisions between the solute and solvent molecules.
Hence, solubility of the solute also increases with increase in temperature, placing it on ice bath will further reduce the crystal formation, hence no crystal should be formed in the reaction.
Thus, we can conclude that the result of crystals boiling the impure product with too much solvent and then cooling on ice is that no crystals are produced.
Answer:Absolute zero is the lowest possible temperature where nothing could be colder and no heat energy remains in a substance. ... By international agreement, absolute zero is defined as precisely; 0 K on the Kelvin scale, which is a thermodynamic (absolute) temperature scale; and –273.15 degrees Celsius on the Celsius scale.
Explanation: