Direction medium of the wave move relation to to direction of wave propagation
Explanation:
high energy to Low energy
=the electron gains energy (K.E)
When the balanced reaction equation is:
P4O10 + 6H2O→ 4 H3PO4
when we have the mass of P4O10 = 10 g and the molar mass of P4O10=284 g/mol & we have the molar mass of H3PO4 =98 g/mol so we can get the mass of H3PO4 by substitution by:
mass of H3PO4 = (mass of P4O10)/(molar mass of P4O10) * 4(mol of H3PO4)*molar mass of H3PO4
∴mass of H3PO4 = (10 / 284) * 4 * 98 = 13.8 g
Answer:
- <em>The mystery substance is</em> <u>C. Bromine (Br) </u>
Explanation:
<em>Argon (Ar) </em>is a noble gas. Whose freezing point is -189 °C (very low), thus it cannot be the frozen substance. Also, it is not reactive, thus is would have not reacted with iron. Hence, argon is not the mystery substance.
<em>Scandium (Sc) </em>is a metal from group 3 of the periodic table, thus is will not react with iron. Thus, scandium is not the mystery substance.
Both <em>bromine</em> and <em>iodine</em> are halogens (group 17 of the periodic table).
The freezing point of bromine is −7.2 °C, and the freezing point of iodine is 113.7 °C. Thus, both could be solids (frozen) in the lab.
The reactivity of the halogens decrease from top to bottom inside the group. Bromine is above iodine. Then bromine is more reactive than iodine.
Bromine is reactive enough to react with iron. Iodine is not reactive enough to react with iron.
You can find in the internet that bromine vapour over hot iron reacts producing iron(III) bromide. Also, that bromine vapors are red-brown.
Therefore, <em>the mystery substance is bromine (Br).</em>