Answer:
1.55×10²² molecules.
Explanation:
We'll begin by calculating the number of mole in 5.32 g of pure lead (Pb). This can be obtained as follow:
Mass of Pb = 5.32 g
Molar mass of Pb = 207 g/mol
Mole of Pb =?
Mole = mass /molar mass
Mole of Pb = 5.32/207
Mole of Pb = 0.0257 mole
Finally, we shall determine the number of molecules in 0.0257 mole of Pb. This can be obtained as follow:
From Avogadro's hypothesis,
I mole of Pb contains 6.02×10²³ molecules.
Therefore, 0.0257 mole will contain = 0.0257 × 6.02×10²³ = 1.55×10²² molecules.
Therefore, 5.32 g of pure lead (Pb) contains 1.55×10²² molecules.
Answer:

Explanation:
Hello!
In this case, according to the Avogadro's number, it is possible to compute the atoms of Kr in 2.00 moles as shown below:

Best regards!
Answer:
Option A. FeCl3
Explanation:
The following data were obtained from the question:
Mass of iron (Fe) = 6.25g
Mass of the compound formed = 18g
From the question, we were told that the compound formed contains chlorine. Therefore the mass of chlorine is obtained as follow
Mass of chlorine (Cl) = Mass of compound formed – Mass of iron.
Mass of chlorine (Cl) = 18 – 6.25
Mass of chlorine (Cl) = 11.75g
The compound therefore contains:
Iron (Fe) = 6.25g
Chlorine (Cl) = 11.75g
The empirical formula for the compound can be obtained by doing the following:
Step 1:
Divide by their molar mass
Fe = 6.25/56 = 0.112
Cl = 11.75/35.5 = 0.331
Step 2:
Divide by the smallest
Fe = 0.112/0.112 = 1
Cl = 0.331/0.112 = 3
The empirical formula for the compound is FeCl3
They meet all the environmental conditions an organism needs to survive
Since the beaker was heated we can asume that only magnesium cloride is left in the beaker, therfore the difference between the beaker with magnesium chloride and the empty beaker give the mass of magnisium chloride: