The upper back muscles being worked while using a rowing machine .your upper trapezius and rhomboids located between your shoulder blades, and latissimus dorsi located beneath the armpits
To solve this problem, it will be necessary to apply the concepts related to the fundamental resonance frequency in a closed organ pipe.
This is mathematically given as

For fundamental frequency n is 0, then,

When,
v = Velocity of sound
L = Length,
Rearranging to find the velocity,



Therefore the speed of sound in this gas is 416m/s
An object in motion will continue to move in the same direction and with the same speed unless acted upon by an unbalanced force. states that forces occur as equal and opposite pairs. The strength of the force is related to the mass of the objects and the distance between them.
Answer:
I_v = 2,700 W / m^2
I_m = 610 W / m^2
I_s = 16 W / m^2
Explanation:
Given:
- The Power of EM waves emitted by Sun P_s = 4.0*10^26 W
- Radius of Venus r_v = 1.08 * 10^11 m
- Radius of Mars r_m = 2.28 * 10^11 m
- Radius of Saturn r_s = 1.43 * 10^12 m
Find:
Determine the intensity of electromagnetic waves from the sun just outside the atmospheres of (a) Venus, (b) Mars, and (c) Saturn.
Solution:
- We know that Power is related to intensity and surface area of an object follows:
I = P / 4*pi*r^2
Where, A is the surface area of a sphere models the atmosphere around the planets.
a)
- The intensity at the surface of Venus is calculated as:
I_v = P_s / 4*pi*r^2_v
I_v = 4.0*10^26 / 4*pi*(1.08*10^11)^2
I_v = 2,700 W / m^2
b)
- The intensity at the surface of Mars is calculated as:
I_m = P_s / 4*pi*r^2_m
I_m = 4.0*10^26 / 4*pi*(2.28*10^11)^2
I_m = 610 W / m^2
c)
- The intensity at the surface of Saturn is calculated as:
I_s = P_s / 4*pi*r^2_s
I_s = 4.0*10^26 / 4*pi*(1.43*10^12)^2
I_s = 16 W / m^2
The sphere’s Electric potential energy is 1.6*
J
Given,
q=6. 5 µc, V=240 v,
We know that sphere’s Electric potential energy(E) = qV=6.5*
=1.6*
J
<h3>Electric potential energy</h3>
The configuration of a certain set of point charges within a given system is connected with the potential energy (measured in joules) known as electric potential energy, which is a product of conservative Coulomb forces. Two crucial factors—its inherent electric charge and its position in relation to other electrically charged objects—can determine whether an object has electric potential energy.
In systems with time-varying electric fields, the potential energy is referred to as "electric potential energy," but in systems with time-invariant electric fields, the potential energy is referred to as "electrostatic potential energy."
A tiny sphere carrying a charge of 6. 5 µc sits in an electric field, at a point where the electric potential is 240 v. what is the sphere’s potential energy?
Learn more about Electric potential energy here:
brainly.com/question/24284560
#SPJ4