1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erica [24]
3 years ago
9

Qué órganos forman parte del sistema nervioso

Physics
1 answer:
Dmitry [639]3 years ago
3 0
El cerebro, la medula espinal, y los nervios.
You might be interested in
A force of 20 N is exerted on a box with a mass of 15 kg. if friction exerts a force of 4 N on the box, at what rate does the bo
MakcuM [25]

Answer:

1.06 metres per second squared

Explanation:

since friction acts against foward force

20 N - 4 N = 16 N

use Newtons 2nd law F=ma Solve for a:

a= F÷m

= 16 ÷ 15

= 1.06 metres per second squared

3 0
3 years ago
Who submits the federal budget every year?
artcher [175]
C) The president submits the federal budget every year.
Hope this helps you!
8 0
3 years ago
Determine a formula for the magnitude of the force F exerted on the large block (Mc) so that the mass Ma does not move relative
SVEN [57.7K]

Answer:

The magnitude of the force F is given by

F =  (M_{a} + M_{b} + M_{c} ) *(M_{b}*g/(\sqrt{M_{a} ^{2}-M_{b} ^{2}}))

Explanation:

Given there are three blocks of masses M_{a}, M_{b} and M_{c} (ref image in attachment)

When all three masses move together at an acceleration a, the force F is given by

F =  (M_{a} + M_{b} + M_{c} ) *a    ................(equation 1)

Also it is given that M_{a} does not move with respect to M_{c}, which gives tension T  is exerted on pulley  by M_{a} only, Hence tension T is

T = M_{a} *a    ..........(equation 2)

There is also also tension exerted by M_{b}. There are two components here: horizontal due to acceleration a and vertical component due to gravity g. Thus tension is given by

T = M_{b} \sqrt{a^{2} +g^{2} }   ................(equation 3)

From equation 2 and 3, we get

M_{a} *a  = M_{b} \sqrt{a^{2} +g^{2} }  

Squaring both sides we get

M_{a} ^{2} *a^{2} = M_{b} ^{2} * (a^{2}+g^{2})

M_{a} ^{2} *a^{2} = (M_{b} ^{2} * a^{2})+ (M_{b} ^{2} *g^{2})

(M_{a} ^{2}  -  M_{b} ^{2}) * a^{2} = M_{b} ^{2} *g^{2}

a^{2} = M_{b} ^{2} *g^{2}/(M_{a} ^{2}  -  M_{b} ^{2})

Taking square root on both sides, we get acceleration a

a = M_{b}*g/(\sqrt{M_{a} ^{2}-M_{b} ^{2}})

Hence substituting the value of a in equation 1, we get

F =  (M_{a} + M_{b} + M_{c} ) *(M_{b}*g/(\sqrt{M_{a} ^{2}-M_{b} ^{2}}))

3 0
3 years ago
The gravitational force of a star on an orbiting planet 1 is f1. planet 2, which is three times as massive as planet 1 and orbit
vovikov84 [41]

Gravitational force is given by, F= G\frac{mM}{R^{2}}

Where, m and M are the masses of the objects, R is the distance between them and G gravitational constant.

Gravitational force of the star on planet 1, F_{1}= G\frac{m_{1}M}{R^{2}}

Gravitational force of the star on planet 2, F_{2}= G\frac{3m_{1}M}{(3R)^{2}}

Ratio, \frac{F_{1}}{F_{2}}= \frac{\frac{Gm_{1}M}{R^{2}}}{\frac{G3m_{1}M}{(3R)^{2}}}

\frac{F_{1}}{F_{2}}=  \frac{3}{1}

Therefore, the gravitational force of the star on the planet 1 is three times that on planet 2.

6 0
3 years ago
Read 2 more answers
Direct current, DC, flows in a _________ direction while alternating current, AC, the direction of flow ___________. A) single,
kramer
The flow of Direct current (DC) is constant and flows in one direction. Most digital electronics make use of DC. Alternating current (AC) periodically flows in reverse and is mostly used to deliver power to houses, buildings and the like. With that alone, you can already rule out A, C and D. 

The answer would then be B. constant, periodically reversing. 
4 0
3 years ago
Read 2 more answers
Other questions:
  • Modern wind turbines generate electricity from wind power. The large, massive blades have a large moment of inertia and carry a
    9·1 answer
  • When we say the sun is rising and the sun is setting, who is the observer? where should the observer be to see that the sun does
    13·1 answer
  • Which of Newton’s laws, when combined algebraically with his law of universal gravitation, can be used to calculate Earth’s mass
    12·1 answer
  • Can you have a positive velocity but a negative acceleration? I need this to complete my physics hw :/
    12·1 answer
  • Before beginning an exercise program a person should always
    6·1 answer
  • According to Kepler's third law (p2 = a3), how does a planet's mass affect its orbit around the Sun? Group of answer choices
    7·1 answer
  • assuming 100% efficient energy conversion how much water stored behind a 50 centimeter high hydroelectric dam would be required
    13·1 answer
  • 20 A measure of the speed and direction of an object's motion
    7·1 answer
  • An object is travelling in a straight line. The diagram is the speed-time graph for
    15·1 answer
  • A car is moving along a straight line op is shown below it moves from O to P in 8sec and return to p to q in 6sec. What is the a
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!