1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aliina [53]
2 years ago
5

The gravitational force of a star on an orbiting planet 1 is f1. planet 2, which is three times as massive as planet 1 and orbit

s at three times larger distance from the star, experiences gravitational force f2. part a what is the ratio f2f1? you can ignore the gravitational force between the two planets

Physics
2 answers:
vovikov84 [41]2 years ago
6 0

Gravitational force is given by, F= G\frac{mM}{R^{2}}

Where, m and M are the masses of the objects, R is the distance between them and G gravitational constant.

Gravitational force of the star on planet 1, F_{1}= G\frac{m_{1}M}{R^{2}}

Gravitational force of the star on planet 2, F_{2}= G\frac{3m_{1}M}{(3R)^{2}}

Ratio, \frac{F_{1}}{F_{2}}= \frac{\frac{Gm_{1}M}{R^{2}}}{\frac{G3m_{1}M}{(3R)^{2}}}

\frac{F_{1}}{F_{2}}=  \frac{3}{1}

Therefore, the gravitational force of the star on the planet 1 is three times that on planet 2.

Ivanshal [37]2 years ago
3 0

The ratio of gravitational forces F₂ : F₁ = 1 : 3

\texttt{ }

<h3>Further explanation</h3>

Newton's gravitational law states that the force of attraction between two objects can be formulated as follows:

\large {\boxed {F = G \frac{m_1 ~ m_2}{R^2}} }

<em>F = Gravitational Force ( Newton )</em>

<em>G = Gravitational Constant ( 6.67 × 10⁻¹¹ Nm² / kg² )</em>

<em>m = Object's Mass ( kg )</em>

<em>R = Distance Between Objects ( m )</em>

Let us now tackle the problem !

\texttt{ }

<u>Given:</u>

Gravitational force on planet 1 = F₁

Gravitational force on planet 2 = F₂

mass of planet 1 = m₁

mass of planet 2 = m₂ = 3m₁

distance between planet 1 and star = R₁

distance between planet 2 and star = R₂ = 3R₁

<u>Asked:</u>

ratio of force = F₂ : F₁ = ?

<u>Solution:</u>

F_2 : F_1 = G \frac{ M m_2} { (R_2)^2 } : G \frac{ M m_1} { (R_1)^2 }

F_2 : F_1 = \frac{m_2} { (R_2)^2 } : \frac{ m_1} { (R_1)^2 }

F_2 : F_1 = \frac{3m_1} { (3R_1)^2 } : \frac{ m_1} { (R_1)^2 }

F_2 : F_1 = \frac{3} { 9 } : 1

F_2 : F_1 = \frac{1} { 3 } : 1

\boxed{F_2 : F_1 = 1 : 3}

\texttt{ }

<h3>Learn more</h3>
  • Impacts of Gravity : brainly.com/question/5330244
  • Effect of Earth’s Gravity on Objects : brainly.com/question/8844454
  • The Acceleration Due To Gravity : brainly.com/question/4189441

\texttt{ }

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Gravitational Fields

You might be interested in
The half of the moon facing the sun is always lit, but the different phases happen
Marizza181 [45]

Answer:

the answer is the spinning of the moon lets us see different amounts of light

Explanation:

you wanna know why uh yes ok lets cut to the magic so when the moon.

3 0
3 years ago
3.00 textbook rests on a frictionless, horizontal tabletop surface. A cord attached to the book passes over a pulley whose diame
sammy [17]

Answer:

a1 = 3.56 m/s²

Explanation:

We are given;

Mass of book on horizontal surface; m1 = 3 kg

Mass of hanging book; m2 = 4 kg

Diameter of pulley; D = 0.15 m

Radius of pulley; r = D/2 = 0.15/2 = 0.075 m

Change in displacement; Δx = Δy = 1 m

Time; t = 0.75

I've drawn a free body diagram to depict this question.

Since we want to find the tension of the cord on 3.00 kg book, it means we are looking for T1 as depicted in the FBD attached. T1 is calculated from taking moments about the x-axis to give;

ΣF_x = T1 = m1 × a1

a1 is acceleration and can be calculated from Newton's 2nd equation of motion.

s = ut + ½at²

our s is now Δx and a1 is a.

Thus;

Δx = ut + ½a1(t²)

u is initial velocity and equal to zero because the 3 kg book was at rest initially.

Thus, plugging in the relevant values;

1 = 0 + ½a1(0.75²)

Multiply through by 2;

2 = 0.75²a1

a1 = 2/0.75²

a1 = 3.56 m/s²

6 0
2 years ago
How do I solve for the maximum speed and height given those accelerations? (please give the formula so I can solve these types o
Sphinxa [80]
It depends on how you want to solve it you can solve it in many different meathods:$
5 0
2 years ago
Induced EMF and Current in a Shrinking LoopShrinking Loop. A circular loop of flexible iron wire has an initial circumference of
vodomira [7]

Answer:

Explanation:

Let c be the circumference and r be the radius

c = 2πr , r = c / 2π , area A = π r² = π (c/2π )²  = (1/4π) x c²

flux (ψ) = BA = 1 X 1/4π X c²

dψ/dt = 1/4π x 2c dc/dt =1/2π x c x dc/dt

at t = 8 s

c = 161 - 13 x 8 = 57 cm , dc/dt = 13 cm/s  

e = dψ/dt = (1 / 2π )x 57 x 13 x 10⁻⁴ = 118 x 10⁻⁴ V.

4 0
3 years ago
PLEASE HELP ASAP!!!! What displacement did the object undergo in the time interval between t= 2.0s and t=8.0s?
Katyanochek1 [597]
Displacement s = (u+v)*t/2 (t refers to delta time)
= (0.45 + 2.7)*6/2
= 3.15*3
= 9.45 m
3 0
3 years ago
Other questions:
  • Feng and Isaac are riding on a merry-go- round. Feng rides on a horse at the outer rim of the circular platform, twice as far fr
    14·1 answer
  • The force on an object is F⃗ =−17j⃗ . For the vector v⃗ =2i⃗ +3j⃗ , find: (a) The component of F⃗ parallel to v⃗
    9·1 answer
  • The function x = (5.2 m) cos[(5πrad/s)t + π/5 rad] gives the simple harmonic motion of a body. At t = 5.3 s, what are the (a) di
    14·1 answer
  • There is a current I flowing in a clockwise direction in a square loop of wire that is in the plane of the paper. If the magneti
    15·1 answer
  • PLEASE ANSWER ASAP BEFORE MY TEACHER AND MY MOM KILLES ME PLEASE ASAP
    15·2 answers
  • A small rock is thrown vertically upward with a speed of 17.0m/s from the edge of the roof of a 26.0m tall building. The rock do
    13·1 answer
  • You would have the largest mass of gold if your chunk of gold weighed 1 N on
    7·2 answers
  • The toy car is about 3 inches long is an example of a ?
    11·1 answer
  • If the velocity of gas molecules is doubled the its kinetic energy will be
    15·1 answer
  • An object of mass m attached to a spring of force constant k oscillates with simple harmonic motion. The maximum displacement fr
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!