Answer:
the answer is the spinning of the moon lets us see different amounts of light
Explanation:
you wanna know why uh yes ok lets cut to the magic so when the moon.
Answer:
a1 = 3.56 m/s²
Explanation:
We are given;
Mass of book on horizontal surface; m1 = 3 kg
Mass of hanging book; m2 = 4 kg
Diameter of pulley; D = 0.15 m
Radius of pulley; r = D/2 = 0.15/2 = 0.075 m
Change in displacement; Δx = Δy = 1 m
Time; t = 0.75
I've drawn a free body diagram to depict this question.
Since we want to find the tension of the cord on 3.00 kg book, it means we are looking for T1 as depicted in the FBD attached. T1 is calculated from taking moments about the x-axis to give;
ΣF_x = T1 = m1 × a1
a1 is acceleration and can be calculated from Newton's 2nd equation of motion.
s = ut + ½at²
our s is now Δx and a1 is a.
Thus;
Δx = ut + ½a1(t²)
u is initial velocity and equal to zero because the 3 kg book was at rest initially.
Thus, plugging in the relevant values;
1 = 0 + ½a1(0.75²)
Multiply through by 2;
2 = 0.75²a1
a1 = 2/0.75²
a1 = 3.56 m/s²
It depends on how you want to solve it you can solve it in many different meathods:$
Answer:
Explanation:
Let c be the circumference and r be the radius
c = 2πr , r = c / 2π , area A = π r² = π (c/2π )² = (1/4π) x c²
flux (ψ) = BA = 1 X 1/4π X c²
dψ/dt = 1/4π x 2c dc/dt =1/2π x c x dc/dt
at t = 8 s
c = 161 - 13 x 8 = 57 cm , dc/dt = 13 cm/s
e = dψ/dt = (1 / 2π )x 57 x 13 x 10⁻⁴ = 118 x 10⁻⁴ V.
Displacement s = (u+v)*t/2 (t refers to delta time)
= (0.45 + 2.7)*6/2
= 3.15*3
= 9.45 m