Answer:
hshawi hdsdk
done and my name is fricking bella your gonna die
Answer:
K = 373.13 N/m
Explanation:
The force of the spring is equals to:
Fe - m*g = 0 => Fe = m*g
Using Hook's law:
K*X = m*g Solving for K:
K = m/X * g
In this equation, m/X is the inverse of the given slope. So, using this value we can calculate the spring's constant:
K = 10 / 0.0268 = 373.13N/m
Answer:
1keff=1k1+1k2
see further explanation
Explanation:for clarification
Show that the effective force constant of a series combination is given by 1keff=1k1+1k2. (Hint: For a given force, the total distance stretched by the equivalent single spring is the sum of the distances stretched by the springs in combination. Also, each spring must exert the same force. Do you see why?
From Hooke's law , we know that the force exerted on an elastic object is directly proportional to the extension provided that the elastic limit is not exceeded.
Now the spring is in series combination
F
e
F=ke
k=f/e.........*
where k is the force constant or the constant of proportionality
k=f/e
............................1
also for effective force constant
divide all through by extension
1) Total force is
Ft=F1+F2
Ft=k1e1+k2e2
F = k(e1+e2) 2)
Since force on the 2 springs is the same, so
k1e1=k2e2
e1=F/k1 and e2=F/k2,
and e1+e2=F/keq
Substituting e1 and e2, you get
1/keq=1/k1+1/k2
Hint: For a given force, the total distance stretched by the equivalent single spring is the sum of the distances stretched by the springs in combination.
Answer: yea ma’am I’m sorry but you still
Answer:
Magnitude of magnetic field is 1.29 x 10⁻⁴ T
Explanation:
Given :
Current flowing through the wire, I = 16.9 A
Length of wire. L = 0.69 m
Magnetic force experienced by the wire, F = 1.5 x 10⁻³ N
Consider B be the applied magnetic field.
The relation to determine the magnetic force experienced by current carrying wire is:
F = ILBsinθ
Here θ is the angle between magnetic field and current carrying wire.
According to the problem, the magnetic field and current carrying wire are perpendicular to each other, that means θ = 90⁰. So, the above equation becomes:
F = ILB

Substitute the suitable values in the above equation.

B = 1.29 x 10⁻⁴ T