Answer:
Advanced Pharmaceutics Inc
Explanation:
Advanced Pharmaceutics Inc
somehow I know this acroynom
Answer:
i. Keq=4157.99.
ii. More hydrogen sulfide will be produced.
Explanation:
Hello,
i. In this case, for the concentrations at equilibrium on the given chemical reaction, the equilibrium constant results:
![Keq=\frac{[H_2S]^2}{[H_2]^2[S_2]} =\frac{(0.97M)^2}{(0.051M)^2(0.087)} =4157.99](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BH_2S%5D%5E2%7D%7B%5BH_2%5D%5E2%5BS_2%5D%7D%20%3D%5Cfrac%7B%280.97M%29%5E2%7D%7B%280.051M%29%5E2%280.087%29%7D%20%3D4157.99)
ii. Now, by means of the Le Chatelier's principle, the addition of a reactant shifts the reaction towards products, it means that more hydrogen sulfide will be produced in order to reach equilibrium.
Best regards.
Answer:
3m/s²
Explanation:
Given parameters:
Mass of object = 3.2kg
Force to the right = 16.3N
Force to the left = 6.7N
Unknown:
Acceleration of the object = ?
Solution:
To solve this problem, we use newtons second law of motion;
Net force = mass x acceleration
Net force on object = Force to the right - Force to the left
Net force = 16.3N - 6.7N = 9.6N
So;
9.6 = 3.2 x a
a =
= 3m/s²
Just use the Heisenberg Uncertainty principle:
<span>ΔpΔx = h/2*pi </span>
<span>Δp = the uncertainty in momentum </span>
<span>Δx = the uncertainty in position </span>
<span>h = 6.626e-34 J s (plank's constant) </span>
<span>Hint: </span>
<span>to calculate Δp use the fact that the uncertainty in the momentum is 1% (0.01) so that </span>
<span>Δp = mv*(0.01) </span>
<span>m = mass of electron </span>
<span>v = velocity of electron </span>
<span>Solve for Δx </span>
<span>Δx = h/(2*pi*Δp) </span>
<span>And that is the uncertainty in position. </span>
13 - Periodic table
14 - Dimitri mandeleev
15 - groups
Mark me brainiest pls it right answer