Answer:
The air pressure is 9.8 *10^4 pa
The water will rise to a height of 10.0 meter
Explanation:
Step 1: Data given
As a storm from moves in, you notice that a column of mercury in a barometer rises to 736 mm.
Step 2: Calculate the air pressure
The Pressure against the mercury column = h*d*g = 0.736 * 13593 * 9.81 = 9.8 * 10^4 Pa
Step 3: Calculate the height of the water
Let the Pressure the water column for same pressure is h meter : -
9.8 * 10^4 = h*d*g
=>9.8*10^4 = h*1000*9.81
=>h = 10.0 meter
The water will rise to a height of 10.0 meter
In chemistry, pH<span> is a numeric scale used to specify the acidity or basicity of an aqueous solution. It is approximately the negative of the base 10 logarithm of the concentration of hydronium ions. We calculate as follows:
pH = -log [H3O+]
pH = -log[</span><span>5.45 × 10–5 M]
pH = 4.3</span>
Answer: Kinetic Energy of the atoms also increases.
Explanation: We are given that the temperature of the gas increases.
Relation between kinetic energy and temperature follows:

where, K = Average Kinetic energy
R = Gas constant
T = Temperature
= Avogadro's number
As seen from the relation above, the Kinetic energy of the gas is directly proportional to the temperature, hence as the temperature increases, kinetic energy of the atom also increases.
It has more density when it sinks because the water pushes away thats why people float they are less dense
Answer : The partial pressure of the
in the tank in psia is, 32.6 psia.
Explanation :
As we are given 75 %
and 25 %
in terms of volume.
First we have to calculate the moles of
and
.


Now we have to calculate the mole fraction of
.


Now we have to calculate the partial pressure of the
gas.


conversion used : (1 Kpa = 0.145 psia)
Therefore, the partial pressure of the
in the tank in psia is, 32.6 psia.