1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Feliz [49]
3 years ago
10

An unknown radioactive element decays into non-radioactive substances. In 420 days the radioactivity of a sample decreases by 39

percent.1.What is the half-life of the element?2.How long will it take for a sample of 100 mg to decay to 46 mg?

Physics
1 answer:
julia-pushkina [17]3 years ago
3 0

Answer: Half life is 588.96 days

Anf It will take 659.81 days for a 100 mg sample to decay to 46 mg.

Explanation:

You might be interested in
Hey can someone send me the answer to this
bagirrra123 [75]

Cars 'A' and 'C' look like they're moving at the same speed.  If their tracks are parallel, then they're also moving with the same velocity.

5 0
4 years ago
C
Angelina_Jolie [31]
I am very sorry I don’t know
7 0
4 years ago
A thin 1.5 mm coating of glycerine has been placed between two microscope slides of width 0.8 cm and length 3.9 cm . Find the fo
Radda [10]

The  force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is zero.

<h3>Force required to pull one end at a constant speed</h3>

The force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is determined by applying Newton's second law of motion as shown below;

F = ma

where;

  • m is mass
  • a is acceleration

At a constant speed, the acceleration of the object will be zero.

F = m x 0

F = 0

Thus, the  force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is zero.

Learn more about constant speed here: brainly.com/question/2681210

3 0
2 years ago
Which of the following is a false statement about dispersion forces? View Available Hint(s) Which of the following is a false st
icang [17]

Explanation :

Dispersion forces are also known as London dispersion forces. It is the weakest force. Also, it is the part of the Van der Waals forces.

(1) This force is exhibited by all atoms and molecules.

(2) These forces are the result of the fluctuations in the electron distribution within molecules or atoms. Due to these fluctuations, the electric field is created. The magnitude of this force is explained in terms of Hamaker constant 'A'.

(3) Dispersion forces result from the formation of instantaneous dipoles in a molecule or atom. When electrons are more concentrated in a place, instantaneous dipoles formed.

(4) Dispersion force magnitude depends on the amount of surface area available for interactions. If the area increases, the size of the atom also increase. As a result, stronger dispersion forces.

So, the false statement is "Dispersion forces always have a greater magnitude in molecules with a greater molar mass".  

4 0
4 years ago
lanet R47A is a spherical planet where the gravitational acceleration on the surface is 3.45 m/s2. A satellite orbitsPlanet R47A
qaws [65]

2.6×10^6\:\text{m}

Explanation:

The acceleration due to gravity g is defined as

g = G\dfrac{M}{R^2}

and solving for R, we find that

R = \sqrt{\dfrac{GM}{g}}\:\:\:\:\:\:\:(1)

We need the mass M of the planet first and we can do that by noting that the centripetal acceleration F_c experienced by the satellite is equal to the gravitational force F_G or

F_c = F_G \Rightarrow m\dfrac{v^2}{r} = G\dfrac{mM}{r^2}\:\:\:\:\:(2)

The orbital velocity <em>v</em> is the velocity of the satellite around the planet defined as

v = \dfrac{2\pi r}{T}

where <em>r</em><em> </em>is the radius of the satellite's orbit in meters and <em>T</em> is the period or the time it takes for the satellite to circle the planet in seconds. We can then rewrite Eqn(2) as

\dfrac{4\pi^2 r}{T^2} = G\dfrac{M}{r^2}

Solving for <em>M</em>, we get

M = \dfrac{4\pi^2 r^3}{GT^2}

Putting this expression back into Eqn(1), we get

R = \sqrt{\dfrac{G}{g}\left(\dfrac{4\pi^2 r^3}{GT^2}\right)}

\:\:\:\:=\dfrac{2\pi}{T}\sqrt{\dfrac{r^3}{g}}

\:\:\:\:=\dfrac{2\pi}{(1.44×10^4\:\text{s})}\sqrt{\dfrac{(5×10^6\:\text{m})^3}{(3.45\:\text{m/s}^2)}}

\:\:\:\:= 2.6×10^6\:\text{m}

5 0
3 years ago
Other questions:
  • Displacement time squared graph
    8·1 answer
  • Explain the process that causes dew to form on blades of grass. ​
    8·2 answers
  • Is the desert hot or cold?
    7·2 answers
  • I am really struggling with this question because I can't find anything on aphelion and perihelion, it's not a topic we went ove
    7·1 answer
  • A rock is dropped at the same instant that a ball at the same initial elevation is thrown horizontally. which will have the grea
    12·1 answer
  • Give an example of a situation where you could use a cost/ benefit analysis. Be sure to explain at least one cost and one benefi
    6·1 answer
  • Which force keeps and object moving in a circle?​
    12·1 answer
  • Gizmo force and fan cart
    5·1 answer
  • Suppose you have a total charge qtot that you can split in any manner. Once split, the separation distance is fixed. How do you
    5·1 answer
  • How many minutes are each half in soccer ?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!