Answer:
58.27 N
Explanation:
the data we have is:
mass: 
coefficient of friction: 
and we also know the acceleration of gravity is 
We need to do an analysis of horizontal and vertical forces acting on the object:
-------
Vertically the forces acting on the object:
- Normal force
(acting up from the object)
- weight:
(acting down from)
so the sum of forces in the vertical axis "y" are:

from Newton's second Law we know that
, so:

and since the object is not accelerating in the vertical direction (the movement is only horizontal)
, and:

-----------
now let's analyze the horizontal forces
- frictional force:
and since
--> 
- force to move the object:

and the two forces just mentioned must be opposite, thus the sum of forces in the "x" axis is:

and we are told that the crate moves at a steady speed, thus there is no acceleration: 
and we get:

substituting known values:

Answer:
Work done will be 2.205 j
Explanation:
We have given that the spring is compressed b 37.5 cm
So d = 0.375 m
Mass of the block m = 600 gram = 0.6 kg
Acceleration due to gravity 
Gravitational force on the block 
Now we know that work done is give by 
Answer: F = ma,
Explanation:
the most famous equation in physics, establishing an equivalence between energy and mass. But is this the most important equation in physics? Knowledgeable scientists will tell you no. The most important equation in physics is F = ma, also known as Newton's second law of mechanics.
Meters Micrometers centimeters millimeters