It stays constant, because it's using that energy to change state
Answer with Explanation:
We are given that
Mass of spring,m=3 kg
Distance moved by object,d=0.6 m
Spring constant,k=210N/m
Height,h=1.5 m
a.Work done to compress the spring initially=
b.
By conservation law of energy
Initial energy of spring=Kinetic energy of object



v=5.02 m/s
c.Work done by friction on the incline,

To explain, I will use the equations for kinetic and potential energy:

<h3>Potential energy </h3>
Potential energy is the potential an object has to move due to gravity. An object can only have potential energy if 1) <u>gravity is present</u> and 2) <u>it is above the ground at height h</u>. If gravity = 0 or height = 0, there is no potential energy. Example:
An object of 5 kg is sitting on a table 5 meters above the ground on earth (g = 9.8 m/s^2). What is the object's gravitational potential energy? <u>(answer: 5*5*9.8 = 245 J</u>)
(gravitational potential energy is potential energy)
<h3>Kinetic energy</h3>
Kinetic energy is the energy of an object has while in motion. An object can only have kinetic energy if the object has a non-zero velocity (it is moving and not stationary). An example:
An object of 5 kg is moving at 5 m/s. What is the object's kinetic energy? (<u>answer: 5*5 = 25 J</u>)
<h3>Kinetic and Potential Energy</h3>
Sometimes, an object can have both kinetic and potential energy. If an object is moving (kinetic energy) and is above the ground (potential), it will have both. To find the total (mechanical) energy, you can add the kinetic and potential energies together. An example:
An object of 5 kg is moving on a 5 meter table at 10 m/s. What is the objects mechanical (total) energy? (<u>answer: KE = .5(5)(10^2) = 250 J; PE = (5)(9.8)(5) = 245 J; total: 245 + 250 = 495 J</u>)
The change in kinetic energy is 
Explanation:
According to the work-energy theorem, the work done on an object is equal to the change in kinetic energy of the object. Mathematically:
where
:
W is the work done on the object
is the final kinetic energy of the object
is the initial kinetic energy
Also, the work done on an object is (assuming that the force is applied parallel to the motion of the object):

where
F is the magnitude of the force
is the displacement of the object
In this problem, the force acting on the object is
F
While the displacement is the horizontal distance travelled, so

Therefore, the work done is

And so the change in kinetic energy is

Learn more about work and kinetic energy:
brainly.com/question/6763771
brainly.com/question/6443626
brainly.com/question/6536722
#LearnwithBrainly
The change in potential energy of this system is = 40 J.
<h3>What is the potential difference?</h3>
The potential difference, often known as voltage, is equal to the amount of current times the resistance. One Joule, or one Volt, of energy is required for one Coulomb of charge to flow from one place in a circuit to another.
<h3>What is the formula for potential difference?</h3>
V=Uq The change in potential energy of a charge q transported from point A to point B, divided by the charge, is what is used to determine the electric potential difference between points A and B, or VBVA. The joules per coulomb unit of potential difference is called the volt (V).
This system's potential energy changed by 40 J.
Energy = charge * potential difference
=> Energy = (8v)*5
=> Energy = 40 J
The change in potential energy of this system is = 40 J.
To know more about Potential Difference visit:
brainly.com/question/12198573
#SPJ4