Answer:
Potential energy = 441 N
Explanation:
Given:
Mass M = 15 kg
Height = 3 m
Find:
Potential energy
Computation:
Potential energy = mgh
Potential energy = (15)(9.8)(3)
Potential energy = 441 N
Answer:
3. V = 0.2673 L
4. V = 2.4314 L
5. V = 0.262 L
6. V = 2.224 L
Explanation:
3. assuming ideal gas:
∴ R = 0.082 atm.L/K.mol
∴ V1 = 225 L
∴ T1 = 175 K
∴ P1 = 150 KPa = 1.48038 atm
⇒ n = RT/PV
⇒ n = ((0.082 atm.L/K.mol)(175 K))/((1.48038 atm)(225 L))
⇒ n = 0.043 mol
∴ T2 = 112 K
∴ P2 = P1 = 150 KPa = 1.48038 atm
⇒ V2 = RT2n/P2
⇒ V2 = ((0.082 atm.L/K.mol)(112 K)(0.043 mol))/(1.48038 atm)
⇒ V2 = 0.2673 L
4. gas is heated at a constant pressure
∴ T1 = 180 K
∴ P = 1 atm
∴ V1 = 44.8 L
⇒ n = RT/PV
⇒ n = ((0.082 atm.L/K.mol)(180 K))/((1 atm)(44.8 L))
⇒ n = 0.3295 mol
∴ T2 = 90 K
⇒ V2 = RT2n/P
⇒ V2 = ((0.082 atm.L/K.mol)(90 K)(0.3295 mol))/(1 atm)
⇒ V2 = 2.4314 L
5. V1 = 200 L
∴ P1 = 50 KPa = 0.4935 atm
∴ T1 = 271 K
⇒ n = RT/PV
⇒ n = ((0.082 atm.L/K.mol)(271 K))/((0.4935 atm)(200 L))
⇒ n = 0.2251 mol
∴ P2 = 100 Kpa = 0.9869 atm
∴ T2 = 14 K
⇒ V2 = RT2n/P2
⇒ V2 = ((0.082 atm.L/K.mol)(14 K)(0.2251 mol))/(0.9869 atm)
⇒ V2 = 0.262 L
6.a) ∴ V1 = 24.6 L
∴ P1 = 10 atm
∴ T1 = 25°C = 298 K
⇒ n = RT/PV
⇒ n = ((0.082 atm.L/K.mol)(298 K))/((10 atm)(24.6 L))
⇒ n = 0.0993 mol
∴ T2 = 273 K
∴ P2 = 101.3 KPa = 0.9997 atm
⇒ V2 = RT2n/P2
⇒ V2 = ((0.082 atm.L/K.mol)(273 K)(0.0993 mol))/(0.9997 atm)
⇒ V2 = 2.224 L
Answer:
C₁₂H₂₂O₁₁ + H₂O → C₅H₁₂O₆ + C₆H₁₂O₆
Explanation:
Chemical equation:
C₁₂H₂₂O₁₁ + H₂O → C₅H₁₂O₆ + C₆H₁₂O₆
Source of sucrose:
Sucrose is present in roots of plants and also in fruits. It is storage form of energy. Some insects and bacteria use sucrose as main food. Best example is honeybee which collect sucrose and convert it into honey.
Monomers of sucrose and hydrolysis:
Sucrose consist of monomers glucose and fructose which are join together through glycosidic bond. Hydrolysis break the sucrose molecule into glucose and fructose. In hydrolysis glycosidic bond is break which convert the sucrose into glucose and fructose. Hydrolysis is slow process but this reaction is catalyze by enzyme. The enzyme invertase catalyze this reaction.
The given reaction also completely follow the law of conservation of mass. There are equal number of atoms of elements on both side of chemical equation thus mass remain conserved.
The difference is the amount of oxygen in the compound
Answer: 14 :12 water molecules,
Explanation: 17: 6 molecules