Density is given by:
D = M/V
D = density, M = mass, V = volume
Given values:
M = 3.7g, V = 4.6cm³
Plug in and solve for D:
D = 3.7/4.6
D = 0.80g/cm³
Answer:
dbdbdheh eewr h eahehwGFTT5Q3JFX
Explanation:
FJGXJDGTFJSRRXAGFEWFWDdQDE
'
Answer:
2.45 J
Explanation:
The following data were obtained from the question:
Mass (m) = 0.5 kg
Height (h) = 1 m
Kinetic energy (KE) =?
Next, we shall determine the velocity of the rock after it has fallen half way. This can be obtained as follow:
Initial velocity (u) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Height (h) = 1/2 = 0.5 m
Final velocity (v) =?
v² = u² + 2gh
v² = 0² + (2 × 9.8 × 0.5)
v² = 9.8
Take the square root of both side
v = √9.8
v = 3.13 m/s
Finally, we shall determine the kinetic energy of the rock after it has fallen half way. This can be obtained as follow:
Mass (m) = 0.5 kg
Velocity (v) = 3.13 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 0.5 × 3.13²
KE = 0.25 × 9.8
KE = 2.45 J
Therefore, the kinetic energy of the rock after it has fallen half way is 2.45 J
Answer:
Energy due to air resistance = 31.8 Joules
Explanation:
According to the law of conservation of energy, energy can neither be created nor destroyed but can be transformed from one form to another
Kinetic Energy + Energy due to air resistance = Potential energy..........(1)
If there is no energy loss due to air resistance, potential energy = kinetic energy
mass, m = 1.5 kg
height, h = 4.0 m
speed, v = 6 m/s
Kinetic energy = 0.5 mv²
Kinetic energy = 0.5 * 1.5 * 6²
Kinetic energy = 27 Joules
Potential Energy = mgh
Potential energy = 1.5 * 9.8 * 4
Potential energy = 58.8 Joules
From equation (1)
27 + Energy due to air resistance = 58.8
Energy due to air resistance = 58.8 - 27
Energy due to air resistance = 31.8 Joules