Answer:
a.
b.
c.
d. The angular acceleration when sitting in the middle is larger.
Explanation:
a. The magnitude of the torque is given by
, being r the radius, F the force aplied and
the angle between the vector force and the vector radius. Since
and so
.
b. Since the relation
hols, being I the moment of inertia, the angular acceleration can be calculated by
. Since we have already calculated the torque, all left is calculate the moment of inertia. The moment of inertia of a solid disk rotating about an axis that passes through its center is
, being M the mass of the disk. If we assume that a person has a punctual mass, the moment of inertia of a person would be given by
, being
the mass of the person and
the distance from the person to the center. Given all of this, we have
.
c. Similar equation to b, but changing
, so
.
d. The angular acceleration when sitting in the middle is larger because the moment of inertia of the person is smaller, meaning that the person has less inertia to rotate.
I believe it is acceleration!
<span>The blades should turn in two directions.</span>
Answer:
Verified that he oscillations are exactly isosynchronous with frequency ω0 = p g/l, independent of the amplitude.
Explanation:
Starting from the first principle for the derivation and to prove that the oscillations are exactly isosynchronous with frequency ω0 = p g/l, independent of the amplitude. The mathematical manipulations was applied, trigonometric identities was also applied.The steps and explanation are shown in the attachment.
Answer:
The distance from the Sun to Neptune is 29,41 AU.
Explanation:
We know, from the sentence, that the orbit of Neptune has an average diameter around 8.80*10⁹km.
Now, we can calculate the radius of this orbit, which is equivalent to the distance from thsi planet to the Sun. Let's recall tha the radius is the half of the diameter.

Ok, we know that 1.496*10¹¹m is an AU, therefore we have:

Finally, the distance R is 29,41 AU.
I hope it helps you! :)