That depends on the wavelength of the electromagnetic radiation.
-- If the waves are long, then we use them for radio, TV, and cellphones.
-- If the waves are shorter than that, then we use them for GPS in the car.
-- If the waves are shorter than that, then we use them to heat meatloaf
in the microwave oven.
-- If the waves are shorter than that, then they warm us and they
make our plants grow ... like the ones we eat.
-- If the waves are shorter than that, then our eyes use them to see with.
-- If the waves are shorter than that, then they tan our skin.
-- If the waves are shorter than that, then they can cause cancer on
our skin.
-- If the waves are shorter than that, then they can cause cancer and
other diseases in places inside our body.
Latitude or distance from the equator. Temperatures drop the further an area is from the equator due to the curvature of the earth. In areas closer to the poles, sunlight has a larger area of atmosphere to pass through and the sun is at a lower angle in the sky.
If the answer is correct please mark as brainlist
Answer:
V = I * R
R = 2 / 3.5 = .571 ohms maximum resistance of wire
R = ρ L / A where R is proportional to L and inversely proportional to A
A = ρ L / R minimum area of wire
ρ = 1 / μ = 1.67E-8 ohm-m resistivity inverse of conductivity
A = 1.67E-8 ohm-m * 225 m / .571 ohm = 6.68E-6 m^2
A = 6.68 mm^2 since 1 mm^2 = 10-6 m^2 or 1 mm = 10-3 m
A = Π r^2 = 6.68 mm^2
r = (6.68 / 3.14)^1/2 mm = 2.13 mm radius of wire
d = 2 * r = 4.26 mm
Answer:
The charges under study are of the same sign
The calculation of the electric field for each charge separately, there is no relationship between the charges
Explanation:
Let's start by writing the equation for the electric field
E = k q / r²
where q is the charge under analysis and r the distance from this charge to a positive test charge.
When analyzing the statement the student has some problems.
* The charges under study are of the same sign, it does not matter if positive or negative.
* The calculation of the electric field for each charge separately, there is no relationship between the charges for the calculation of the electric field.
* What is added is the interaction of the electric field with the positive test charge, in this case each field has the opposite direction to the other, so the vector sum gives zero
<u>ANY</u> pair of vectors can produce that resultant, as long as ...
If one of the vectors is V₁ = A i + B j . . . . . . where 'A' and 'B' are <u>any</u> two numbers,
then the other one is V₂ = -A i - B j