The effective height of the water for Smith's house will be 24.61m.
<h3>How to calculate the height?</h3>
Based on the information given, the volume of the water in sphere will be:
= 4/3πr³ = (5.80 × 10^5)/1000
= 4.18r³ = 580
r³ = 138.7
r = 5.18m
The effective height of the water will be:
= 18.0 + 2(5.18)
= 28.36
The gauge pressure at Faucet of Jones house will be:
= pgh
= 1000(9.8)(28.36)
= 277.9kPa
The effective height of the water for Smith's house will be:
= 18.0 + 2(5.18) - 3.75
= 24.61m
The gauge pressure at Faucet of Jones house will be:
= 1000 × 9.8 × 24.61
= 241.2kPa
Learn more about height on:
brainly.com/question/983412
#SPJ1
The aquarium can hold 2750 liters because 1 cubic meter equals 1000 liters.
I'm almost positive the answer is a.
You are given the mass of a sphere that is 26 kg sphere and it is released from rest when θ = 0°. You are also given the force of the spring that is F = 100 N. You are asked to find the tension of the spring. Imagine that the sphere is connected to a spring. The spring exerts a tension and the spring exerts gravitational pull. This will follow the second law of newton.
T - F = ma
T = ma + F
T = 26kg (9.81m/s²) + 100 N
T = 355.06 N
Check the current weather map for 2 different times, and see where the center of the storm is. That tells you what direction it's moving. With its speed and direction, you have its velocity.