Cations from smallest to largest
Li⁺ ,Na⁺, K⁺ (from Periodic Table, the bigger number of period, the bigger size, of atom, so the bigger size of cation)
1) LiF smaller cation then KF
1,036 <span>853
</span><span>The lattice energy increases as cations get smaller, as shown by LiF and KF.
</span><span>I think this one should be correct answer, because the compared substances have also the same anion, and we can compare cations in them.
2) The same cation Li , so wrong statement.
3)</span>The same cation Na , so wrong statement.
4) NaCl smaller cation then KF
786 853
Actually Rb or Rubidium in zero state has the following
electron configuration:
<span>1s22s2</span><span>2p6</span><span>3s2</span><span>3p63d10</span><span>4s2</span><span>4p65s1</span>
However we can see that the ion has a 1 positive charge,
which means that it lacks 1 electron, therefore the answer from the choices is:
<span>d.
rb+: 1s22s22p63s23p64s23d104p6</span>
Answer:
1.874 M.
Explanation:
<em>Molarity is defined as the no. of moles of a solute per 1.0 L of the solution.</em>
<em />
M = (no. of moles of solute)/(V of the solution (L)).
<em>∴ M = (mass/molar mass)of NiCl₂/(V of the solution (L)).</em>
<em></em>
∴ M = (mass/molar mass)of NiCl₂/(V of the solution (L)) = (85.0 g / 129.59 g/mol)/(0.35 L) = 1.874 M.
Answer: D.
Explanation: A chemical reaction is said to be in a state of equilibrium when the rate of the forward reaction equals the rate of the backward reaction, thus, there is no net change in the concentration of reactants and products.
Answer:
Thorium-234 option a .......