Answer:
Decreases to half.
Explanation:
From the question given above, the following data were obtained:
Initial mass (m₁) = m
Initial force (F₁) = F
Initial acceleration (a₁) =?
Final mass (m₂) = ½m
Final force (F₂) = ¼F
Final acceleration (a₂) =?
Next, we shall determine a₁. This can be obtained as follow:
F₁ = m₁a₁
F = ma₁
Divide both side by m
a₁ = F / m
Next, we shall determine a₂.
F₂ = m₂a₂
¼F = ½ma₂
2F = 4ma₂
Divide both side by 4m
a₂ = 2F / 4m
a₂ = F / 2m
Finally, we shall determine the ratio of a₂ to a₁. This can be obtained as follow:
a₁ = F / m
a₂ = F / 2m
a₂ : a₁ = a₂ / a₁
a₂ / a₁ = F/2m ÷ F/m
a₂ / a₁ = F/2m × m/F
a₂ / a₁ = ½
Cross multiply
a₂ = ½a₁
From the illustrations made above, the acceleration of the car will decrease to half the original acceleration
Answer: Point A is the answer for the potential energy. Point D is the answer for the kinetic energy.
Explanation:
like dioxyribonucleic acid? if so then that's DNA
During the diving when a diver jumps off from platform he brings her knees and arms closer to the body
This is because when diver is in air he don't have any torque about his center of mass which shows that angular momentum of his body will remain constant during his motion in air
Now we can say product of his moment of inertia and his angular speed will remain constant always
So here if we decrease the moment of inertia of the body during our motion then angular speed will increase so that product will remain constant
and this is what the diver use during his diving
so correct answer will be
<u><em>It decreases her moment of inertia.</em></u>
Answer:
Magdeburg hemispheres are two half-spheres of equal size. Placing them together traps air between them. This air is merely trapped, and not compressed, so the pressure inside is the same as the pressure of the atmosphere outside the spheres. The spheres thus pull apart with nearly no resistance.