Answer:
This question is incomplete
Explanation:
This question is incomplete but some general explanation provides a clear answer to what is been asked in the question.
An ionic/electrovalent compound is a compound whose constituent atoms are joined together by ionic bond. Ionic bond is a bond involving the transfer of valence electron(s) from an atom (to form a positively charged cation) to another atom (to form a negatively charged anion). The atom transferring is usually a metal while the atom receiving is usually a non-metal.
For example (as shown in the attachment), in the formation of NaCl salt, the sodium (Na) transfers the single electron (valence) on it's outermost shell to chlorine (Cl) which ordinarily has 7 electrons on it's outermost shell but becomes 8 after receiving the valence electron from sodium. It should also be noted that Na is a metal while Cl is a non-metal.
Hey, you already posted this question today and I gave an answer for it. Do you need more information?
<span>Seawater is water from a sea or ocean. On average, seawater in the world's oceans has a salinity of approximately 3.5% or 35 parts per thousand. This means that for every 1 liter (1000 mL) of seawater there are 35 grams of salts (mostly, but not entirely, sodium chloride) dissolved in it.
I used google
</span>
Carbon dioxide, when excess in number, becomes a greenhouse gas According to sources, the most probable answer to this query is that carbon dioxide is one of the greenhouse gases that traps heat affecting climate. This increase in heat turns the temperature higher. Thank you for your question. Please don't hesitate to ask in Brainly your queries.
Explanation:
The ratio of NH3 to NO produced will remain constant since NH3 is the limiting reactant.
Here in this reaction for every 4 moles of ammonia and 5 moles of oxygen gas , 4 moles of NO and 6 moles of water are formed.
So when the amount of oxygen gas is increased to 20 moles without changing the amount of ammonia , the amount of NO formed does not increase as ammonia becomes the limiting reactant.