Answer:
1 and 3.
Explanation:
The entropy measures the randomness of the system, as higher is it, as higher is the entropy. The randomness is associated with the movement and the arrangement of the molecules. Thus, if the molecules are moving faster and are more disorganized, the randomness is greater.
So, the entropy (S) of the phases increases by:
S solid < S liquid < S gases.
1. The substance is going from solid to gas, thus the entropy is increasing.
2. The substance is going from a disorganized way (the molecules of I are disorganized) to an organized way (the molecules join together to form I2), thus the entropy is decreasing.
3. The molecules go from an organized way (the atom are joined together) to a disorganized way, thus the entropy increases.
4. The ions are disorganized and react to form a more organized molecule, thus the entropy decreases.
Boiling-point elevation is a colligative property.
That means, the the boiling-point elevation depends on the molar content (fraction) of solute.
The dependency is ΔTb = Kb*m
Where ΔTb is the elevation in the boiling point, kb is the boiling constant, and m is the molality.
A solution of 6.00 g of Ca(NO3) in 30.0 g of water has 4 times the molal concentration of a solution of 3.00 g of Ca(NO3)2 in 60.0 g of water.:
(6.00g/molar mass) / 0.030kg = 200 /molar mass
(3.00g/molar mass) / 0.060kg = 50/molar mass
=> 200 / 50 = 4.
Then, given the direct proportion of the elevation of the boiling point with the molal concentration, the solution of 6.00 g of CaNO3 in 30 g of water will exhibit a greater boiling point elevation.
Or, what is the same, the solution with higher molality will have the higher boiling point.
The circulatory system moves blood in our bodies. The blood can move oxygen and nutrients to our muscles and limbs. The heartbeat pushes the blood, and the blood cells carry glucose.
Explanation:
Greenhouse gases are gases in Earth's atmosphere that trap heat. They let sunlight pass through the atmosphere, but they prevent the heat that the sunlight brings from leaving the atmosphere.
Explanation:
The answer for this question depends on the type of meniscus in the cylinder. If it is an upright meniscus like in water, the reading should be taken at the bottom of the meniscus. However if it is an inverted meniscus like in mercury, the reading should be taken at the top of the meniscus.
(Can you check and see if there's any pictures or information that is missing?)