Answer:
Ohm's law states that I=V/R (Current=volts divided by resistance). Since we're looking for resistance, we'll rewrite it as R=V/I. Then just plug in the numbers; R=84/9, R= 9 1/3 or 28/3. The resistance of the wire is 9.33... or 9 1/3 ohm's, depending on how you wanna write it.
Hope it helped u if yes mark me BRAINLIEST!
Tysm!
I would appreciate it!
Answer:
approximately 5.8 seconds
Explanation:
if you where to time how fast a rock would fall 12 meters it would approximately be 5.8 seconds
Answer:
Time = 0.55 s
Height = 8.3 m
Explanation:
The ball is dropped and therefore has an initial velocity of 0. Its acceleration, g, is directed downward in the same direction as its displacement,
.
The dart is thrown up in which case acceleration, g, acts downward in an opposite direction to its displacement,
. Both collide after travelling for a time period, t. Let the height of the dart from the ground at collision be
and the distance travelled by the ball measured from the top be
.
It follows that
.
Applying the equation of motion to each body (h = v_0t + 0.5at^2),
Ball:
(since
.)

Dart:
(the acceleration is opposite to the displacement, hence the negative sign)

But




The height of the collision is the height of the dart above the ground,
.




Explanation:
Mirrors consist of reflecting surfaces that reflect light.
Reflection is a phenomenon of light wave (but also of other types of waves) in which a ray of light hits a surface, and then it bounces back into the original medium at a certain angle.
The direction of the reflected ray is determined by the law of reflection:
- The incident ray, the reflected ray and the normal to the surface all lie in the same plane
- The angle of reflection is equal to the angle of incidence (where both angles are measured between the ray and the normal to the surface)
A plane mirror is a type of mirror consisting of a straight surface. As a result, light incident perpendicular to the surface is reflected back exactly in the opposite direction.
The image formed by a plane mirror is:
- The same size as the object
- Virtual (it is located behind the mirror)
- Laterally inverted
- Upright
Answer:
The speed is 1.52 m.
Explanation:
Given that,
Displacement =0.270 m
Distance = 0.130 m
Suppose a 0.321-kg mass is attached to a spring with a force constant of 13.3 N/m.
We need to calculate the angular velocity
Using formula of angular velocity

Put the value into the formula


We need to calculate the velocity
Using formula of velocity

Put the value into the formula


Hence, The speed is 1.52 m.